• Title/Summary/Keyword: Indoor Particulate Matter

Search Result 116, Processing Time 0.025 seconds

A Suggestion of indoor CO2 concentration prediction equation by operating KTX flap in Tunnel Sections (터널구간 운행시 KTX 플랩 작동에 따른 CO2 농도 예측식 제안)

  • So, Jin-Sub;Yoo, Seong-Yeon;Kim, Ick-Hee
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2052-2057
    • /
    • 2010
  • In December 2006, the Ministry of Environment in Korea established the "Indoor Air Quality Management Guidelines in Public Transportation." As the items of the guideline, $CO_2$(Carbon dioxide) and PM10(Particulate matter). Therefore, the air quality inside the train is supposed to be ruled by this guideline. This study calculated the increase or decrease rate of the $CO_2$ concentration by using the data measured in accordance with flap operation. In case of flap close or open, the calculated $CO_2$ concentration variation was 6.32ppm/min. The $CO_2$ concentration prediction equation was derived from the general equation and the actual measured value are compared with the predicted $CO_2$ concentration suggested during the KyungBu high speed railway construction. The predicted value show good agreement with the measured data.

  • PDF

Correlation of $CO_2$ Concentration with Number of Passengers and Tunnel Regions in the KTX Cabin (KTX 객실의 $CO_2$ 농도와 승객 수 및 터널구간과의 상관관계)

  • Kwon, Soon-Bark;Cho, Young-Min;Park, Duck-Shin;Park, Eun-Young
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.192-195
    • /
    • 2006
  • With increasing concerns of indoor air quality, $CO_2$ concentration in the public transportation, such as train, bus, and subway, draws big interests. The $CO_2$ concentration in the indoor air is regarded as index of ventilation status rather than that of adverse health effect. In this study, we measured the time-series of $CO_2$ concentrations in the KTX cabin during the journey of Gyongbu-line (Seoul-Busan) and Honam-line (Seoul-Mokpo) with the number of passengers on board. At the same time, the concentration of particulate matter (PM), temperature, humidity and gaseous pollutants including HCHO and VOCs were monitored. It is found that the $CO_2$ concentration was correlated linearly with number of passengers and was highly correlated with tunnel regions where the ventilation unit (flap) was closed.

  • PDF

Comparison of Analytical Method for Measuring Particulate Matter in Indoor Air (실내공간에서의 공기중 먼지 측정방법에 관한 비교분석)

  • 정종흡;한천길;이상칠;신재영;이규남
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.4
    • /
    • pp.1-9
    • /
    • 1993
  • Since most people spend a large majority of their time indoors (at least in the industrialized countries), indoor air may affect human health more than outdoor air. This study was carried out to characterize the reference and equivalent methods against the low volume method which was promulgated by the Ministry of Health and Social Affairs. The Laser and Piezo air sampler offer the advantage of real time data and low labor costs. The arithmetic mean concentrations were found to be 102.9% (Laser-2 min method) and 65.9% (Piezo method) against low volume method (100%). The statistical analysis procedure for this comparision is linear regression. The linear regression line of low volume method had slopes of 0.5487 and 0.9697 and Y intercepts of 0.0266 and 0.0110 $\mu$g/m$^3$ about Laser (2 min) and (24 h) method respectively. And the correlation coefficients were 0.7271 and 0.9433.

  • PDF

Particulate Matter Removal of Indoor Plants, Dieffenbachia amoena 'Marianne' and Spathiphyllum spp. according to Light Intensity (광량에 따른 실내식물 디펜바키아와 스파티필럼의 미세먼지 제거능)

  • Kwon, Kei-Jung;Park, Bong-Ju
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.2
    • /
    • pp.62-68
    • /
    • 2018
  • This study investigated the effect of light intensity on the removal of particulate matter by Dieffenbachia amoena 'Marianne' and Spathiphyllum spp.. An acrylic chamber ($600{\times}800{\times}1200mm$, $L{\times}W{\times}H$) modeled as an indoor space and a green bio-filter ($495{\times}495{\times}1000mm$, $L{\times}W{\times}H$) as an air purification device were made of acrylic. The removal of particulate matter PM10 and PM1, the photosynthetic rate, stomatal conductance, and number of stomata of Dieffenbachia amoena 'Marianne' and Spathiphyllum spp. were measured according to three different levels of light intensity (0, 30 and $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$). Regarding the length of time taken for PM10 to reach $1{\mu}g$, the Dieffenbachia amoena 'Marianne' showed a significant difference according to the presence or absence of light, and there was no significant difference shown between light intensity of 30 and $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$. As for the Spathiphyllum spp., there was no significant difference between 0 and $30{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$, while a significant difference was shown at $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$. After 90 minutes, the PM1, PM10, and $CO_2$ residuals of the Spathiphyllum spp. were lowest at $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$. The remaining amount of PM1 and PM10 was lower with the Spathiphyllum spp. than with the Dieffenbachia amoena 'Marianne', even at $0{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$. With both plants, the higher the light intensity, the higher the photosynthetic rate, while the stomatal conductance did not show any significant difference. Spathiphyllum spp. showed a higher photosynthetic rate and stomatal conductance and a greater number of stomata than Dieffenbachia amoena 'Marianne', and stomata were observed in both the front and back sides of the leaves. The air purification effect of Spathiphyllum spp. is considered to be better than Dieffenbachia amoena 'Marianne' at the same light intensity due to such plant characteristics. Therefore, in order to select effective indoor plants for the removal of particulate contamination in an indoor space, the characteristics of plants such as the photosynthetic rate and the number and arrangement of stomata according to indoor light intensity should be considered.

Characterization of Fine Dust Collection Using a Filter Ventilation (환기장치와 필터를 활용한 미세먼지 제거특성 조사)

  • Jeon, Tae-Yeong;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.229-233
    • /
    • 2015
  • In this study, we examined the removal characteristics of suspended particulate matters which are one of carcinogens to cause lung cancer. The fine dust capture by a pilot scale filtration system depends on several important variables such as humidity, initial fine dust injection volume, and flow rate. The average concentration of particulate matters in the test chamber decreased, but the ultimate collection efficiency did not change during the filtration under high humidity, compared to those of using ambient conditions The initial injection amount of fine dust did not influence the particle capturing efficiency. When the flow rate reduced from 0.6 m/s to 0.3 m/s, the dust collection time increased approximately 1.4 times. Among all variables tested, the flow rate showed the most significant effect on the removal efficiency of fine particulate matter.

Genotoxic Effect of Air-borne Particulate Matter in Residential Area of Seoul City (서울시내 주거지역 미세먼지의 유전독성 영향)

  • Oh Seung Min;Sung Hye Kyoung;Kim Eun Sil;Kim Jong Geuk;Ryu Byung Taek;Chung Kyu Hyuck
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.4 s.51
    • /
    • pp.365-374
    • /
    • 2005
  • Ambient air particulate matters are classified into two distinct modes in sire distribution, namely the coarse and fine particles. Correlation between high particulate concentration and adverse effect on human populations has long been recognized. However, the toxicology of these adverse efforts has not been clarified. We investigated the genotoxic effect of PM 2.5 collected from urban area in Seoul by comet assay (A549 cells), CBMN assay (CHO-K1 cells) and EROD-microbioassay (H4IIE cells). Results from in vitro micronucleus assay and comet assay showed that PM 2.5 samples collected from traffic area, residential area and indoor air induced chromosomal damage and DNA breakage in a non-cytotoxic dose. The complex mixture effect of these PM 2.5 extracts was quantified by EROD-microbioassay in terms of its bio-TEQ (biologiral -TCDD equivalent concentration) which was 70.87$\pm$28.07, 93.55$\pm$21.80 and 14.31 $\pm$ 1.10 ng/g-PM 2.5 in traffic area, residental area and indoor air samples, respectively. Conclusively, we suggested that PM 2.5 collected from traffic area and residential area contains CYPIA inducer and genotoxic materials.

Indoor and Outdoor Concentrations of Air Pollutants in Beauty Shops at kwangju Area

  • Son Bu-Soon;Song Mi-Ra;Yang Won-Ho;Park Jong-An
    • Journal of Environmental Science International
    • /
    • v.15 no.2
    • /
    • pp.101-106
    • /
    • 2006
  • The work of hairdressers includes washing, coloring, bleaching, permanent waving, conditioning, and cutting hair. Hairdressers are subjected to a number of physical and toxicological hazards. The toxicological hazards are those resulting from exposure to a wide range of chemicals that are usually classified active processes. In this study, twenty beauty shops were selected to assess the exposure to indoor air pollutants such as VOCs and particulate matter $(PM_{10})$ during one month from September 1 to September 30, 2003. Indoor air quality of beauty shops might be worse by vehicle emissions because the beauty shops were generally located near roadways. Personal exposures to VOCs and $PM_{10}$ were related to indoor concentrations of beauty shops. According to the questionnaire, hairdressers complained of sore throat, eye irritation, and nervousness as physical symptoms. The measured mean concentrations of respiratory particulates were $30.5ng/m^3$ in indoor, $30.5ng/m^3$ in outdoor and $44.0ng/m^3$ on personal levels. The personal concentration was found higher than indoor and outdoor concentrations. The heavy metals mean concentrations were shown as indoor (Na>Zn>Cr), outdoor (Cr>Zn>Pb), and personal (Na>Cr>Zn) levels. Conclusively, customers as well as workers in the beauty shops might be highly exposed to air pollutants from indoor and outdoor sources. Therefore, proper management should be taken to improve the indoor air quality in beauty shops.

Comparison of Correlation between Total Airborne Bacteria and Particulate Matter in University Spaces (일부 학교 내 총부유세균 및 미세먼지의 상관성 비교)

  • Hyekyung Seo;Harim An
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.2
    • /
    • pp.115-124
    • /
    • 2024
  • Objectives: The aim of this study is to assess indoor air quality within and around buildings and evaluate the health risks associated with exposure to indoor air pollution. The study compares IAQ standards established by the World Health Organization with those set by South Korea's Ministry of Environment and Ministry of Education. Methods: The study utilized an Anderson Sampler and DustTrakTM II to collect samples of total airborne bacteria and PM in indoor and outdoor environments. Collected samples were analyzed using biological and biochemical methods. Statistical analysis was conducted using SPSS to examine the correlation between airborne bacteria and PM. Results: The study revealed that the concentration of total airborne bacteria in indoor air generally remained below the Ministry of Environment's standard of 800 CFU/m3, although it surpassed this threshold in certain instances. PM concentrations did not exceed the standards. Indoor fine dust concentration was higher when there were people (P<0.05). There was no difference in total floating bacterial concentrations between indoor and outdoor environments (P=0.184). Finally, there was a correlation between fine dust and airborne bacteria concentrations. Conclusion: The study evaluated the concentrations of total airborne bacteria and PM in indoor air, emphasizing the importance of managing IAQ. Further research in various environments is essential to ensure a healthy indoor environment. The findings underscore the need for ongoing research and management to enhance IAQ and create safer and healthier living environments.

Indoor air pollution in ger, a traditional type of residence in Mongolia (몽골 울란바토르 시 전통 주거공간의 실내공기 오염 기초조사)

  • Lee, Boram;Chimeddulam, Dalaijamts;Jargalsaikhan, Khishigt;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.2
    • /
    • pp.118-125
    • /
    • 2016
  • Objectives: The traditional type of residence in used in Mongolia, called a ger, is an important residential form and applies coal combustion for cooking and heating. The combustion of coal in ger is the major source of indoor air pollution. The purposes of this study were to measure indoor air pollution in ger and determine the effect of cooking and heating activities. Methods: Indoor temperature, relative humidity, particulate matter less than $2.5{\mu}m$ ($PM_{2.5}$) and black carbon (BC) were continuously measured for 24 hours in eight ger. The measurements were conducted in January or February 2015. Heavy metals in $PM_{2.5}$ filter samples were analyzed by ICP-MS. Results: Average indoor temperature and relative humidity were $19.6{\pm}4.6^{\circ}C$ and $21.4{\pm}5.2%$, respectively. The average indoor $PM_{2.5}$ concentration in the eight ger was $119.8{\mu}g/m^3$ and ranged from 69.4 to $202.7{\mu}g/m^3$. The peak concentrations of $PM_{2.5}$ and BC during cooking and heating periods were several times higher than the 24- hour average concentration. Conclusion: The major contributor to indoor $PM_{2.5}$ and BC concentrations in the ger was coal combustion for cooking and heating.

Assessment of Indoor Air Quality of Classroom in School by Means of Source Generation - Case Study (발생원에 따른 일부 학교 교실의 실내공기질 평가 사례연구)

  • Yang Won-Ho;Byeon Jae-Cheol;Kim Young-Hee;Kim Dae-Won;Son Bu-Soon;Lee Jung-Eun
    • Journal of Environmental Science International
    • /
    • v.14 no.10
    • /
    • pp.979-983
    • /
    • 2005
  • Indoor air quality has been addressed as an important atmospheric environmental issue and has caught attention of the public in recent years in Korea. Good indoor air quality in classrooms favour student's learning ability, teacher and staff's productivity according to other studies. In this study, each classroom at four different schools was chosen for comparison of indoor and outdoor air quality by means of source generation types such as new constructed classroom, using of cleaning agents and purchased furniture. Temperature, relative humidity (RH), carbon dioxide $(CO_2)$, formaldehyde (HCHO), total volatile organic compounds (TVOCs) and particulate matter with diameter less than $10{\mu}m\;(PM_{10})$ were monitored at indoor and outdoor locations during lesson. HCHO was found to be the worst among parameters measured in new constructed classroom, HCHO and TVOCs was worst in classroom with new purchased furniture, and TVOCs was worst in classroom cleaned by cleaning agents, Indoor $(CO_2)$ concentrations often exceeded 1500 ppm indicating importance of ventilation. Active activity of students during break time made the $PM_{10}$ concentration higher than a lesson, Improvements and further researches should be carried out considering indoor air quality at schools is of special concern since children and students are susceptible to poor air quality.