• Title/Summary/Keyword: Indoor Location System

Search Result 443, Processing Time 0.034 seconds

A Reliable Indoor Positioning Techniques through iBeacon Signal Verification (iBeacon 신호 검증을 통한 신뢰성 있는 실내 측위 기법)

  • Shin, Hong-gi;Yoon, Chang-Pyo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.352-354
    • /
    • 2016
  • Recent with the progress of smart devices, there is an increasing demand for indoor location-based services. For this reason, research on indoor positioning system using a iBeacon techniques added to BLE(Bluetooth Low Energy) specifications of Bluetooth4.0 has been actively. However, RSSI signal used for the measurement of the distance between the iBeacon and the receiving terminal has the problems of inaccurate distance measurement to environmental factors such as obstacles. In this paper, we propose an implemented indoor positioning technique to use filtering technology enhance the reliability of the RSSI signal and the broadcasting signal of the terminal access point function.

  • PDF

Three-dimensional Map Construction of Indoor Environment Based on RGB-D SLAM Scheme

  • Huang, He;Weng, FuZhou;Hu, Bo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.2
    • /
    • pp.45-53
    • /
    • 2019
  • RGB-D SLAM (Simultaneous Localization and Mapping) refers to the technology of using deep camera as a visual sensor for SLAM. In view of the disadvantages of high cost and indefinite scale in the construction of maps for laser sensors and traditional single and binocular cameras, a method for creating three-dimensional map of indoor environment with deep environment data combined with RGB-D SLAM scheme is studied. The method uses a mobile robot system equipped with a consumer-grade RGB-D sensor (Kinect) to acquire depth data, and then creates indoor three-dimensional point cloud maps in real time through key technologies such as positioning point generation, closed-loop detection, and map construction. The actual field experiment results show that the average error of the point cloud map created by the algorithm is 0.0045m, which ensures the stability of the construction using deep data and can accurately create real-time three-dimensional maps of indoor unknown environment.

Development of parked vehicles searching system

  • Lim, Do-Hyung;Seo, Chang-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1464-1467
    • /
    • 2005
  • In this research, we developed a system, which can find the location of vehicle when people park their cars in a big parking lot or large area. People can find their cars readily through this simple device and they can save their time and effort. This is the purpose of this research. Performing this, detection of electromagnetic wave's direction is needed and we used shielding effectiveness of electromagnetic waves for the method of it. An absolute coordinate indicates four directions (E, W, S, N) by using an electronic compass module, and it is needed for the localization. The device can check the received count of the electromagnetic waves coming from all other directions through the system, which is installed in the vehicle. The direction recorded the least received count would be the location of the parked vehicles. We can add on the function of this research by using the same frequency of cars alarm goods. Also, it is useful in the huge indoor parking lot.

  • PDF

A Study on AR Algorithm Modeling for Indoor Furniture Interior Arrangement Using CNN

  • Ko, Jeong-Beom;Kim, Joon-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.11-17
    • /
    • 2022
  • In this paper, a model that can increase the efficiency of work in arranging interior furniture by applying augmented reality technology was studied. In the existing system to which augmented reality is currently applied, there is a problem in that information is limitedly provided depending on the size and nature of the company's product when outputting the image of furniture. To solve this problem, this paper presents an AR labeling algorithm. The AR labeling algorithm extracts feature points from the captured images and builds a database including indoor location information. A method of detecting and learning the location data of furniture in an indoor space was adopted using the CNN technique. Through the learned result, it is confirmed that the error between the indoor location and the location shown by learning can be significantly reduced. In addition, a study was conducted to allow users to easily place desired furniture through augmented reality by receiving detailed information about furniture along with accurate image extraction of furniture. As a result of the study, the accuracy and loss rate of the model were found to be 99% and 0.026, indicating the significance of this study by securing reliability. The results of this study are expected to satisfy consumers' satisfaction and purchase desires by accurately arranging desired furniture indoors through the design and implementation of AR labels.

Design and Implementation of Multi-Sensor-based Vehicle Localization and Tracking System (멀티센서 기반 차량 위치인식 시스템의 설계 및 구현)

  • Jang, Yoon-Ho;Nam, Sang-Kyoon;Bae, Sang-Jun;Sung, Tae-Kyung;Kwak, Kyung-Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.121-130
    • /
    • 2009
  • In this paper, Gaussian probability distribution model based multi-sensor data fusion algorithm is proposed for a vehicular location awareness system. Conventional vehicular location awareness systems are operated by GPS (Global Positioning System). However, the conventional system is not working in the indoor of building or urban area where the receiver is difficult to receive the signal from satellites. A method which is combined GPS and UWB (Ultra Wide-Band) has developed to improve this problem. However, vehicular is difficult to receive seamless location information since the measurement systems by both GPS and UWB convert the vehicle's movement information separately at each sensor. In this paper, normalized probability distribution model based Hybrid UWB/GPS is proposed by utilizing GPS location data and UWB sensor data. Therefore the proposed system provides information with seamless and location flexible properties. The proposed system tested by Ubisense and Asen GPS in the $12m{\times}8m$ outdoor environments. As a result, the proposed system has improved performance for accurateness and connection ability between devices to support various CNS (Car Navigation System).

  • PDF

Analysis of Error Propagation in Two-way-ranging-based Cooperative Positioning System (TWR 기반 군집 협업측위 시스템의 오차 전파 분석)

  • Lim, Jeong-Min;Lee, Chang-Eun;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.898-902
    • /
    • 2015
  • Alternative radio-navigation technologies aim at providing continuous navigation solution even if one cannot use GNSS (Global Navigation Satellite System). In shadowing region such as indoor environment, GNSS signal is no longer available and the alternative navigation system should be used together with GNSS to provide seamless positioning. For soldiers in battlefield where GNSS signal is jammed or in street battle, the alternative navigation system should work without positioning infrastructure. Moreover, the radio-navigation system should have scalability as well as high accuracy performance. This paper presents a TWR (Two-Way-Ranging)-based cooperative positioning system (CPS) that does not require location infrastructure. It is assumed that some members of CPS can obtain GNSS-based position and they are called mobile anchors. Other members unable to receive GNSS signal compute their position using TWR measurements with mobile anchors and neighboring members. Error propagation in CPS is analytically studied in this paper. Error budget for TWR measurements is modeled first. Next, location error propagation in CPS is derived in terms of range errors. To represent the location error propagation in the CPS, Location Error Propagation Indicator (LEPI) is proposed in this paper. Simulation results show that location error of tags in CPS is mainly influenced by the number of hops from anchors to the tag to be positioned as well as the network geometry of CPS.

Analysis of Indoor Air & thermal environment with Hybrid Ventilation system during summer (하계 공동주택 하이브리드 환기시스템 적용에 따른 실내공기 및 열 환경 평가)

  • Kim, Sang-Jin;Kim, Eun-Soo;Kim, Tae-Yeon;Leigh, Seung-Bok
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.387-392
    • /
    • 2006
  • The recent on indoor air problem has led to many studies on the methods and effects of ventilation for better indoor air quality. Although natural ventilation is the most effective and energy-saving method in residental housings, the small size of openable window has been a problem in high-rise residential buildings to ventilate only through natural ventilation. Consequently, the installation of mechanical ventilation system has been a requirement in residential buildings, and has caused other problems such as increase of energy consumption and SBS. Hybrid ventilation which uses forces of both natural and mechanical power has been introduced to solve the problem of increase in energy consumption with natural ventilation. In this paper, two types of hybrid ventilation systems in residential building were introduced. One type was with natural ventilation through vent grille in the window, and another type was with natural ventilation through ceiling duct while both types used mechanical ventilation system with the outlets. The indoor temperature distribution and pollution density distribution in summer while operating the ceiling air conditioner were analyzed through CFD simulation. In this paper, the optimal location of diffusers to achieve thermal comfort would be proposed.

  • PDF

Implementation of u-Care System Based on Multi-Sensor in u-Home Environment (u-Home 환경에서 멀티센서 기반 u-Care System 구현)

  • Lee, Hee-Jeong;Kang, Sin-Jae;Jang, Hyung-Geun;Jeong, Chang-Won;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.12 no.2
    • /
    • pp.135-147
    • /
    • 2011
  • As the number of elderly people living alone has been increasing in the recent years, systems for their safety have been required, and some related services or pilot systems have been operating. These systems provide the monitoring service for the activities of the elderly people living alone with indoor location tracking technology using the various sensors. However, most systems provide services on expensive infrastructure such as attached tags and mobile devices. In this point, this paper attempts to suggest a system based on low cost sensors to collect event data in home environment. And a main characteristic of the system is that people can monitor the results of provided services through web browser in real time and the system can provide related context information to guardians and health care managers through SMS of mobile phone.

Indoor Location-based Emergency Call Service System for Ships using VLC Technology (가시광통신을 이용한 선박 내 위치 기반 응급호출 시스템)

  • Hong, Seung-Beom;Lee, Kyou-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2836-2843
    • /
    • 2015
  • Due to metallicity of materials, a vessel has a limitation to adopt RF-based wireless communication technologies for the inner communication means. Visible Light Communication(VLC) can be a sound alternative to dissolve such a limitation. Using a visual light as a transmission medium, VLC is free from radio interferences and restriction of radio usages which are typically related to RF-based wireless communications. In addition, VLC can not only require the facility cost relatively low because of being possibly converged with existing LED illumination, but also be harmless to the human body. This paper proposes an indoor location-based emergency call service system solution for ships using the VLC technology that supports 256Kbps data rate and 5m transmission distance. This paper presents real implementation and testing results of the solution which verifies the propriety of the proposal.

Life-Road : Development of an Emergency Evacuation Application using Augmented Reality and Beacon (Life-Road : 증강현실과 비콘을 사용하는 긴급대피용 애플리케이션 개발)

  • Myeon-gyun Cho
    • Journal of Digital Policy
    • /
    • v.2 no.4
    • /
    • pp.11-15
    • /
    • 2023
  • Recently, a fire suddenly broke out in a crowded theater, and many people were unable to find an escape route, becoming entangled, injured, and suffocating from smoke inhalation, resulting in a large-scale fire accident. Even though most of the people were young, they were unable to evacuate. If they had been elderly, it could have resulted in greater casualties. In particular, since it is difficult to receive accurate location information from GPS indoor, there is an urgent need for location-based services using beacons and an emergency evacuation system that intuitively shows evacuation routes in augmented reality using smart-phones. In this paper, an augmented reality-based emergency evacuation smartphone app was developed based on identifying fire locations and evacuation routes using beacons and fire sensors (IoT). In the future, if the proposed system is applied to indoor spaces where people are crowded, rapid evacuation will be possible even in a sudden fire accident, minimizing human damage.