• Title/Summary/Keyword: Indoor Location System

Search Result 444, Processing Time 0.028 seconds

Indoor Logistics Location Tracking System with Fingerprint (핑거프린트를 적용한 실내 물류 위치추적 시스템)

  • Kim, Doan;Jeon, Sung woo;Jung, Junhee;Bae, Sangjung;Jung, Heokyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.594-596
    • /
    • 2019
  • In this paper, we propose an indoor logistic tracking system that identifies the location and inventory of the logistics in the room based on fingerprints. Through this, we constructed the actual infrastructure of the logistics center and designed and implemented the logistics management system. The proposed system collects the signal strength through the location terminal and generates the signal map to locate the goods. The location terminal is composed of a UHF RFID reader and a wireless LAN card, reads the peripheral RFID signal and the signal of the wireless AP, and transmits it to the web server. This allows the user to communicate with the server through the smartphone app and get information and location of nearby items.

  • PDF

Indoor Localization Algorithm using Virtual Access Points in Wi-Fi Environment

  • Labinghisa, Boney;Lee, Dong Myung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.168-171
    • /
    • 2016
  • In recent years, indoor localization in Wi-Fi environment has been researched for its location determining capability. The fingerprint and RF propagation models has been the main approach in determining indoor positioning. With the use of fingerprint, a low-cost, versatile localization system can be achieved without the use of external hardware. However, only a few research have been made on virtual access points (VAPs) among indoor localization models. In this paper, the idea of indoor localization system using fingerprint with the addition of VAP in Wi-Fi environment is discussed. The idea is to virtually add APs in the existing indoor Wi-Fi system, this would mean additional virtually APs in the network. The experiments of the proposed algorithm shows the positive results when 2VAPs are used compared with only APs. A combination of 3APs and 2VAPs had the lowest average error in all 4 scenarios with 3.99 meters.

A Study of Multi-Target Localization Based on Deep Neural Network for Wi-Fi Indoor Positioning

  • Yoo, Jaehyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.49-54
    • /
    • 2021
  • Indoor positioning system becomes of increasing interests due to the demands for accurate indoor location information where Global Navigation Satellite System signal does not approach. Wi-Fi access points (APs) built in many construction in advance helps developing a Wi-Fi Received Signal Strength Indicator (RSSI) based indoor localization. This localization method first collects pairs of position and RSSI measurement set, which is called fingerprint database, and then estimates a user's position when given a query measurement set by comparing the fingerprint database. The challenge arises from nonlinearity and noise on Wi-Fi RSSI measurements and complexity of handling a large amount of the fingerprint data. In this paper, machine learning techniques have been applied to implement Wi-Fi based localization. However, most of existing indoor localizations focus on single position estimation. The main contribution of this paper is to develop multi-target localization by using deep neural, which is beneficial when a massive crowd requests positioning service. This paper evaluates the proposed multilocalization based on deep learning from a multi-story building, and analyses its learning effect as increasing number of target positions.

Development of PIR Sensor Based Indoor Location Detection System for Smart Home (스마트 홈을 위한 PIR 센서 기반 댁내 위치 인식 시스템 개발)

  • Ha, Kyoung-Nam;Lee, Kyung-Chang;Lee, Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.905-911
    • /
    • 2006
  • Smart homes are expected to offer various intelligent services by recognizing the residents' life pattern, health, and feeling. One of the key issues for realizing the smart home is how to detect the locations of residents. Currently, the research effort is focused on two approaches: terminal-based and non-terminal-based method. The terminal-based method employs a type of device that should be carried by the resident while the non-terminal-based method has no such device. This paper presents a novel non-terminal-based approach using an array of pyroelectric infrared sensors (PIRs) that can detect residents. The feasibility of the system is evaluated experimentally on a test bed.

Robust Relative Localization Using a Novel Modified Rounding Estimation Technique

  • Cho, Hyun-Jong;Kim, Won-Yeol;Joo, Yang-Ick;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.187-194
    • /
    • 2015
  • Accurate relative location estimation is a key requirement in indoor localization systems based on wireless sensor networks (WSNs). However, although these systems have applied not only various optimization algorithms but also fusion with sensors to achieve high accuracy in position determination, they are difficult to provide accurate relative azimuth and locations to users because of cumulative errors in inertial sensors with time and the influence of external magnetic fields. This paper based on ultra-wideband positioning system, which is relatively suitable for indoor localization compared to other wireless communications, presents an indoor localization system for estimating relative azimuth and location of location-unaware nodes, referred to as target nodes without applying any algorithms with complex variable and constraints to achieve high accuracy. In the proposed method, the target nodes comprising three mobile nodes estimate the relative distance and azimuth from two reference nodes that can be installed by users. In addition, in the process of estimating the relative localization information acquired from the reference nodes, positioning errors are minimized through a novel modified rounding estimation technique in which Kalman filter is applied without any time consumption algorithms. Experimental results show the feasibility and validity of the proposed system.

RSSI based Indoor Location Tracking System using Wireless Sensor Network technology (무선 센서네트워크 기술을 활용한 RSSI기반의 실내위치인식 시스템)

  • Kwon, Joon-Dal;Shin, Jae-Wook;Shin, Kwang-Sik;Lee, Eun-Ah;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.364-367
    • /
    • 2007
  • We combined CC2431(Chipcon, Norway), as the platform for the Indoor Location Tracking, which follows Zigbee/IEEE802.15.4 standards in RSSI (Received Signal Strength Indicator) and Base Station Node and then, embodied Indoor Location Tracking System. CC2431 is composed of the Reference Node that transfer its current position at the designated place and the Blind Node. The Blind node receives the current position(X and Y coordinates) of the Reference Node fields which are being contiguous and also, calculates its current position and transfers it to the Base Station Node. The base station node is used for receiving the current position of blind node and passing its data to the PC as a gateway. We can make sure where is the Blind Node not only from the out-of-the-way place of the server side but from the outside in a real-time.

  • PDF

An Accuracy Assessment Scheme through Entropy Analysis in BLE-based Indoor Positioning Systems (BLE 기반 실내 측위 시스템에서 엔트로피 분석을 통한 정확도 평가 기법)

  • Pi, Kyung-Joon;Min, Hong;Han, Kyoungho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.117-123
    • /
    • 2022
  • Unlike the satellite-based outdoor positioning system, the indoor positioning system utilizes various wireless technologies such as BLE, Wi-Fi, and UWB. BLE-based beacon technology can measure the user's location by periodically broadcasting predefined device ID and location information and using RSSI from the receiving device. Existing BLE-based indoor positioning system studies have many studies comparing the error between the user's actual location and the estimated location at a single point. In this paper, we propose a technique to evaluate the positioning accuracy according to the movement path or area by applying the entropy analysis model. In addition, simulation results show that calculated entropy results for different paths can be compared to assess which path is more accurate.

Evaluation of Indoor Air Environment by Changing Diffuser Location and Air Temperature with Under Floor Air Conditioning System (바닥취출 및 흡입시스템 공조방식에서 취출조건 변경시 실내공기환경 평가)

  • Kim Se-hwan;Park Jong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.397-403
    • /
    • 2005
  • The thermal comfort of occupants is directly related to several environmental factors such as velocity of air flow, turbulence intensity and temperature distribution of indoor air. The purpose of this study is to evaluate the indoor air flow and temperature distribution in office area using under-floor air-conditioning system (UFAC System) based on the results from physical measurements and to perform a Computer Fluid Dynamics (CFD) under the same condition of inlet and outlet as field measurement. The results from the CFD simulation are similar to those from the field measurement. The results show that UFAC system is provide proper indoor condition for occupants.

SDS-TWR based Location Compensation Mechanism for Localization System in Wireless Sensor Network

  • Lee, Dong-Myung
    • Journal of Engineering Education Research
    • /
    • v.13 no.5
    • /
    • pp.76-80
    • /
    • 2010
  • In this paper, the Location Compensation Mechanism using equivalent distance rate ($LCM_{edr}$) for localization system based on SDS-TWR (Symmetric Double-Sided Two-Way Ranging) in wireless sensor network is proposed. The performance of the mechanism is experimented in terms of two types of the localization tracking scenarios of indoor and outdoor environments in university campus. From the experimentations, the compensation ratio in the $LCM_{edr}$ is better than that in SDS-TWR about 90% in indoor/outdoor environments in scenario 1 but also is better than that of SDS-TWR about 91.7% in indoor environment and about 100% in outdoor environment in scenario 2 respectively.

  • PDF