• Title/Summary/Keyword: Indoor Autonomous Navigation

Search Result 76, Processing Time 0.024 seconds

Algorithm for Autonomous Wall-Following of Wheeled Mobile Robots Using Reference Motion Synthesis and Generation of Hybrid System (하이브리드 시스템의 기준동작 구성과 생성에 의한 차륜형 이동로봇의 자율 벽면-주행 알고리즘)

  • Lim, Mee-Seub;Im, Jun-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.586-593
    • /
    • 2000
  • In this paper we propose a new approach to the autonomous wall-following of wheeled mobile robots using hybrid system reference motion synthesis and generation. The hybrid system approach is in-troduced to the motion control of nonholonomic mobile robots for the indoor navigation problems. In the dis-crete event system the discrete states are defined by the user-defined constraints and the reference mo-tion commands are specified in the abstracted motions. The hybrid control system applied for the non-holonomic mobile robots can combine the motion planning and autonomous navigation with obstacle avoid-ance for the indoor navigation problem. Simulation results show that hybrid system approach is an effective method for the autonomous navigation in indoor environments.

  • PDF

Autonomous Navigation of Mobile Robot Using Global Ultrasonic System (전역 초음파 시스템을 이용한 이동 로봇의 자율 주행)

  • 황병훈;이수영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.6
    • /
    • pp.529-536
    • /
    • 2004
  • Autonomous navigation of an indoor mobile robot using the global ultrasonic system is presented in this paper. Since the trajectory error of the dead-reckoning navigation grows with time and distance, the autonomous navigation of a mobile robot requires to localize the current position of the robot, so that to compensate the trajectory error. The global ultrasonic system consisting of four ultrasonic generators fixed at a priori known positions in the work space and two receivers on the mobile robot has the similar structure with the well-known satellite GPS(Global Positioning System), and it is useful for the self-localization of an indoor mobile robot. The EKF(Extended Kalman Filter) algorithm for the self-localization is proposed and the autonomous navigation based on the self-localization is verified by experiments.

Autonomous Wall-Following of Wheeled Mobile Robots using Hybrid Control Approach (차륜형 이동로봇의 자율 벽면-주행을 위한 하이브리드 제어)

  • Lim, Mee-Seub;Lim, Joon-Hong;Oh, Sang-Rok
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3105-3107
    • /
    • 1999
  • In this paper, we propose a new approach to autonomous wall-following of wheeled mobile robots using hybrid control system. The hybrid control approach IS introduced to the motion control of nonholonomic mobile robots in the Indoor navigation problems. In hybrid control architecture, the discrete states are defined by the user-defined constraints, and the reference motion commands are specified In the abstracted motions. The hybrid control system applied to motion planning and autonomous navigation with obstacle avoidance In indoor navigation problem. Simulation results show that it is an effective method for the autonomous navigation in indoor environments.

  • PDF

Implementation of Hybrid System Controller for High-Speed Indoor Navigation of Mobile Robot System Using the Ultra-Sonic Sensors (초음파 센서를 이용한 이동 로봇 시스템의 고속 실내 주행을 위한 하이브리드 시스템 제어기의 구현)

  • Im, Mi-Seop;Im, Jun-Hong;O, Sang-Rok;Yu, Beom-Jae;Yun, In-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.9
    • /
    • pp.774-782
    • /
    • 2001
  • In this paper, we propose a new approach to the autonomous and high-speed indoor navigation of wheeled mobile robots using hybrid system controller. The hierarchical structure of hybrid system presented consists of high-level reasoning process and the low-level motion control process and the environmental interaction. In a discrete event system, the discrete states are defined by the user-defined constraints and the reference motion commands are specified in the abstracted motions. The hybrid control system applied for the nonholonomic mobile robots can combine the motion planning and autonomous navigation with obstacle avoidance in the indoor navigation problem. For the evaluation of the proposed algorithm, the algorithm is implemented to the two-wheel driven mobile robot system. The experimental results show that the hybrid system approach is an effective method for the autonomous navigation in indoor environments.

  • PDF

3D Map Generation System for Indoor Autonomous Navigation (실내 자율 주행을 위한 3D Map 생성 시스템)

  • Moon, SungTae;Han, Sang-Hyuck;Eom, Wesub;Kim, Youn-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.140-148
    • /
    • 2012
  • For autonomous navigation, map, pose tracking, and finding the shortest path are required. Because there is no GPS signal in indoor environment, the current position should be recognized in the 3D map by using image processing or something. In this paper, we explain 3D map creation technology by using depth camera like Kinect and pose tracking in 3D map by using 2D image taking from camera. In addition, the mechanism of avoiding obstacles is discussed.

Global Ultrasonic System for Autonomous Navigation of Indoor Mobile Robots

  • Park, Seong-Hoon;Yi, Soo-Yeong;Jin, Sang-Yoon;Kim, Jin-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.846-851
    • /
    • 2004
  • In this paper, we propose a global ultrasonic system for the self-localization and autonomous navigation of indoor mobile robots. The ultrasonic sensor is regarded as the most cost-effective ranging system among the possible alternatives, and it is widely used for general purpose, since it requires simple electronic drivers and has relatively high accuracy. The global ultrasonic system presented in this paper consists of four or more ultrasonic generators fixed at reference positions in the global coordinates of an indoor environment and two receivers mounted on the mobile robots. By using the RF (Radio Frequency) modules added to the ultrasonic sensors, the robot is able to control the ultrasonic generation and to obtain the critical distances from the reference positions, which are required in order to localize is position in the global coordinates. A kalman filter algorithm designed for the self-localization using the global ultrasonic system and the experimental results of the autonomous navigation are presented in this paper.

  • PDF

Image-based Localization Recognition System for Indoor Autonomous Navigation (실내 자율 비행을 위한 영상 기반의 위치 인식 시스템)

  • Moon, SungTae;Cho, Dong-Hyun;Han, Sang-Hyuck
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.128-136
    • /
    • 2013
  • Recently, the localization recognition system research has been studied using various sensors according to increased interest in autonomous navigation flight. In case of indoor environment which cannot support GPS information, we have to look for another way to recognize current position. The Image-based localization recognition system has been interested although there are lots of way to know current pose. In this paper, we explain the localization recognition system based on mark and implementation of autonomous navigation flight. In order to apply to real environment which cannot support marks, localization based on real-time 3D map building is discussed.

Experimental Research on the Characteristics of Indoor Positioning Systems and Mobile Robot Navigation (실내용 위치센서의 특성과 이동로봇의 주행제어에 관한 실험적 연구)

  • Ahn, Jae-Wan;Jin, Ji-Yong;Chung, Woo-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.3
    • /
    • pp.231-239
    • /
    • 2010
  • For indoor mobile robots, the performance of autonomous navigation is affected by a variety of factors. In this paper, we focus on the characteristics of indoor absolute positioning systems. Two commercially available sensor systems are experimentally tested under various conditions. Mobile robot navigation experiments were carried out, and the results show that resultant performance of navigation is highly dependent upon the characteristics of positioning systems. The limitations and characteristics of positioning systems are analyzed from both quantitative and qualitative point of view. On the basis of the analysis, the relationship between the positioning system characteristics and the controller design are presented.

Intelligent Motion and Autonomous Maneuvering of Mobile Robots using Hybrid System (하이브리드 시스템을 이용한 이동로봇의 지능적 동작과 자율주행)

  • 이용미;임준홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.152-152
    • /
    • 2000
  • In this paper, we propose a new approach to intelligent motion and autonomous maneuvering of mobile robots using hybrid system. In high Level, the discrete states are defined by using the sensor-based search windows and the reference motions of a mobile robot as a low vevel are specified in the abstracted motions, The mobile robots can perform both the motion planning and autonomous maneuvering with obstacle avoidance in indoor navigation problem. Simulation and experimental results show that hybrid system approach is an effective method for the autonomous maneuvering in indoor environments.

  • PDF

3-D Indoor Navigation and Autonomous Flight of a Micro Aerial Vehicle using a Low-cost LIDAR (저가형 LIDAR를 장착한 소형 무인항공기의 3차원 실내 항법 및 자동비행)

  • Huh, Sungsik;Cho, Sungwook;Shim, David Hyunchul
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.3
    • /
    • pp.154-159
    • /
    • 2014
  • The Global Positioning System (GPS) is widely used to aid the navigation of aerial vehicles. However, the GPS cannot be used indoors, so alternative navigation methods are needed to be developed for micro aerial vehicles (MAVs) flying in GPS-denied environments. In this paper, a real-time three-dimensional (3-D) indoor navigation system and closed-loop control of a quad-rotor aerial vehicle equipped with an inertial measurement unit (IMU) and a low-cost light detection and ranging (LIDAR) is presented. In order to estimate the pose of the vehicle equipped with the two-dimensional LIDAR, an octree-based grid map and Monte-Carlo Localization (MCL) are adopted. The navigation results using the MCL are then evaluated by making a comparison with a motion capture system. Finally, the results are used for closed-loop control in order to validate its positioning accuracy during procedures for stable hovering and waypoint-following.