• Title/Summary/Keyword: Indoor Air Pollution

Search Result 434, Processing Time 0.025 seconds

Properties of Water-Based Paint According to the Mixing Ratio of Powdered Activated Carbon (분말활성탄 혼입률에 따른 수성도료의 특성)

  • Choi, Byung-Cheol;Kyoung, In-Soo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.48-49
    • /
    • 2020
  • Recently, as people's interest in environmental pollution increases, interest in indoor air pollution as well as outdoors is increasing. Accordingly, this study prepares functional paints by mixing powder activated carbon, which is a porous material, into aqueous paints, and examines the adsorption performance of volatile organic compounds (VOCs) and formaldehyde (HCHO). As a result of the experiment, the concentration of volatile organic compounds (VOCs) and formaldehyde (HCHO) tended to decrease as powder activated carbon was incorporated. It is believed that physical adsorption was achieved by the micropores of powdered activated carbon. However, in the adsorption test method, it is judged that the concentration was affected by the inflow of outside air as the chamber cover was opened to put the test object in the empty chamber where a certain concentration was maintained.

  • PDF

Study on the Air Quality of Metropolitan Subway Stations (수도권 지하철 지하역사의 실내공기질 연구)

  • Cho Young-Min;Park Duckshin;Park Byung-Hyun;Park Eun-Young
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.77-82
    • /
    • 2005
  • Recently, people's rising interests toward a 'well-being' lifestyle together with research contributions are accelerating the concerns regarding indoor air pollution making indoor air quality management an emerging environmental challenge of the era. The Ministry of Environment began to regulate the air quality of railway stations last year. The newly established 'Indoor Air Quality Act' covers 17 facilities whereas only underground subway stations and underground markets were regulated by previous 'Underground Air Quality Management Act' of 1996. In this study, we carried out the measurement of temperature, relative humidity, CO(carbon monooxide), $CO_2$(carbon dioxide), HCHO(formaldehyde), PM-10(particulate matters), and VOCs(volatile organic compounds) in underground subway stations. Based on the obtained results, we will suggest a way to improve the indoor air quality of the subway stations.

  • PDF

Evaluation of Indoor Air Improvement of Matrix Using Activated clay as Adsorption Material (활성백토를 흡착재로 활용한 경화체의 실내 공기 개선 평가)

  • Jeong, Hyun-Su;Kim, Yeon-Ho;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.189-190
    • /
    • 2020
  • The importance of indoor air quality management has recently been highlighted due to environmental problems such as indoor air pollution. Among indoor air pollutants, carbon dioxide occurs in cooking, heating, burning, and causes forgetfulness, dementia and amnesia. Radon, which occurs in building materials, soil and ground, is a type 1 carcinogen that causes lung cancer in the body through breathing. These substances can be released from the room through ventilation, but there is a limit to reducing the amount of indoor activity due to reduced ventilation conditions due to increased indoor activity time. However, these substances can be removed from the gas by adsorption. The purpose of this study was to identify the properties of granular active and powdered active white soil and mix them to make cement-based active white soil adsorbent matrix for carbon dioxide, fine dust and radon gas adsorption, and to evaluate indoor air improvements according to the mixing scale. The results of the experiment showed that active carbon dioxide adsorption performance increased for carbon dioxide and radon as the exchange rate increased through physical adsorption. In particular, the higher the replacement rate of the granular active bag, the better adsorption performance was shown.

  • PDF

Assessment of Human Exposures to Indoor Radon Released from Groundwater (지하수로부터의 실내 라돈오염시 인체노출평가)

  • 유동한;김상준;양지원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.3
    • /
    • pp.241-249
    • /
    • 2001
  • A report by the National Research Council in the United States suggested that many lung cancer deaths each year are associated with breathing radon in indoor air. Most of the indoor radon comes directly from soil beneath the basement of foundation. Recently, radon released from groundwater is found to contribute to the total inhalation risk from indoor air. This study presents the assessment of a exposure to radon released from the groundwater into indoor air. At first, a 3-compartment model is describe the transfer and distribution if radon released from groundwater in a house through showering, washing clothes, and flushing toilets. The model is used to estimate a daily human exposure through inhalation of such radon for adults based on two sets of exposure scenarios, Finally, a sensitivity analysis is used to identify important parameters. The results obtained from the study would help to increase the understanding of risk assessment issues associated with the indoor radon released from groundwater.

  • PDF

The Assessment of Survey on the Indoor Air Quality at Schools in Korea (국내 일부학교 건축물의 실내공기질 평가)

  • Sohn Jong-Ryeul;Roh Young-Man;Son Bu-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.2 s.89
    • /
    • pp.140-148
    • /
    • 2006
  • Recently, indoor air quality (IAQ) in workplace, residential environments and schools has been concerned of people, scientists and related the public, and has recognized the health effects related to indoor air pollution. Therefore, this study was performed to investigate the characteristics of IAQ in 55 kindergartens, elementary school, middle schools, and high schools from June, 2004 to May, 2005 in Korea. We measured indoor air pollutants($PM_{10},\;CO_2$, HCHO, total bacteria colony(TBC), CO, radon, TVOCs, asbestos, and $O_3$), and physical factors(noise, temperature, relative humidity, and illumination) with necessary of management for IAQ in school. We classified into 5 kinds of the school by period since building completion, <1 year, 1-3 years, 3-5 years, and 5-10 years. The concentration of pollutants and the level of physical factors compared with standards and guidelines of IAQ on the Ministry of Environment, the Ministry of Health and Welfare, and the Ministry of Education and Human Resources Development. The major results obtained from this study were as follows. Temperature, relative humidity and illumination among the physical factors did not exceed the standards, but noise exceeded it. Asbestos and $O_3$ did not detect in surveyed classrooms. CO, TBC, TVOCs, and HCHO in kindergartens, TBC in elementary schools, TBC, TVOCs dnd HCHO in middle schools, and HCHO in high schools detected the standards. This study is conducted as a part of efforts to provide a foundational data for further relative researches on management of IAQ of school. Therefore, we suggest that country plan for management of IAQ in school should be established through long-term and continuous investigation for assessment on IAQ in school and health risk assessment for students.

Classification of Pollution Patterns in High School Classrooms using Disjoint Principal Component Analysis (분산주성분 분석을 이용한 고등학교교실 내 오염패턴분류에 관한 연구)

  • Jang, Choul-Soon;Lee, Tae-Jung;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.6
    • /
    • pp.808-820
    • /
    • 2006
  • In regard to indoor air quality patterns, the government introduced various polices that were about managing and monitoring quality of indoor air as a major assignment, and also executed 'Indoor Air Quality Management Act' which was presented in the May, 2004. However, among the multi-usage facilities controlled by the Act, the school was not included yet. This study goal was to investigate PM 10 pollution patterns of the high school classrooms using a pattern recognition method based on cluster analysis and disjoint principal component analysis, and further to survey levels of inorganic elements in May, June, and September, 2004. A hierarchical clustering method was examined to obtain possible objects in pseudo homogeneous sample classes by transformation raw data and by applying various distance. Following the analysis, the disjoint principal component analysis was used to define homogeneous sample class after deleting outliers. Then three homogeneous Patterns were obtained as follows: the first class had been separated and objects in the class were considered to be sampled under semi-open condition. This class had high concentration of Ca, Fe, Mg, K, Al, and Na which are related with a soil and a chalk compounds. The second class was obtained in which objects were sampled while working air-conditioners and was identified low concentration of PM 10 and elements. Objects in the last class were assigned during rainy day. A chalk, soil element and various types of anthropogenic sources including combustions and industrial influenced the third class. This methodology was thought to be helpful enough to classify indoor air quality patterns and indoor environmental categories when controlling an indoor air quality.

Setting time properties of cement matrix according to photosynthetic bacterial dilution ratio (광합성 세균 희석 비율에 따른 시멘트 경화체의 응결 특성)

  • Pyeon, Su-Jeong;Kim, Dae-Yeon;Lim, Jeong-Jun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.89-90
    • /
    • 2018
  • In recent years, harmful substances and fine dust in the air are caused by respiratory and cardiovascular diseases through various mechanisms when they are introduced into the human body through respiration, thereby exacerbating human health and causing cancer by prolonged exposure do. In order to prevent such fine dust from being introduced into the room and to improve indoor air quality, improvement of air quality has attracted attention. Among indoor air pollutants, fine dust and CO2 are pollutants that are directly affected by indoor number and activity. The purpose of this study is to evaluate the basic performance of cement matrix using photosynthetic bacteria as a basic study of fine dust and CO2 adsorption type matrix to suppress indoor air pollution and improve air quality.

  • PDF

The Characteristic of Volatile Organic Compounds(VOCs) Emission from the Type of Indoor Building Materials as the Temperature and Humidity (온.습도에 따른 건축 내장재별 휘발성유기화합물의 방출특성)

  • Seo, Byeong-Ryang;Kim, Shin-Do;Park, Seong-Kyu
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.292-303
    • /
    • 2006
  • The Volatile Organic Compounds(VOCs) are emitted from various sources and have lots of different form. Recently human are spending the many times at indoor area and indoor air pollution is issued the important social problem. The emission sources of indoor air pollutants are very various, also indoor building materials are composed of very complex chemical compounds, these indoor building materials discharge very much VOCs and other hazardous compounds. In this study, we performed the small chamber test to investigate the VOCs emission concentration and characteristics involving five kinds of the indoor building materials(furniture material, wooden floor, wall paper, paint and tile) under different conditions of four temperature and relative humidity as account of the air flow rate(AFR), air exchange rate(AER), loading factor and air velocity respectively. As the result, It was showed that building materials are emitted the highest VOCs concentration at the beginning of experiment and furniture material is emitted the highest VOCs concentration. Most of the materials were affected by temperature, but paint and tile material were affected by humidity.

Investigation into Air Pollution in Car Shipping Workshop in Pyeongtaek Port (자동차 선적작업장의 공기오염 실태조사)

  • Kim, Ji-Ho;Won, Jong-Uk;Kim, Chi-Nyon;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.1
    • /
    • pp.44-53
    • /
    • 2006
  • This study purposed to investigate air pollution in car shipping yards and, for this purpose, we selected an outdoor open-air yard and an indoor ramp into the ship and measured the concentrations of sulfur dioxide, nitrogen dioxide, carbon monoxide, PM10, PM2.5 and heavy metals in the air. The results of this study are as follows. No significant difference was observed in temperature and humidity between the outdoor and indoor workshop, and the average air flow was 0.52 m/s in the indoor workshop, which is higher than 0.19 m/s in the outdoor workshop(p<0.01). The average concentrations of sulfur dioxide, nitrogen dioxide, carbon monoxide, PM10 and PM2.5 according to workplace were 0.03 ppm(${\pm}0.01$), 0.03 ppm(${\pm}0.01$), 0.46 ppm(${\pm}0.22$), $39.44{\mu}g/m^3$(${\pm}2.45$) and $5.45{\mu}g/m^3$(${\pm}1.15$) respectively in the outdoor workshop, and 0.15 ppm(${\pm}0.05$), 0.22 ppm(${\pm}0.06$), 8.85 ppm(${\pm}3.35$), $236.39{\mu}g/m^3$(${\pm}58.21$) and $152.43{\mu}g/m^3$(${\pm}35.42$) respectively in the indoor workshop. Thus, the concentrations of gaseous substances in the indoor workshop were 4.9-19.2 times higher than those in the outdoor workshop, and the concentrations of fine dusts were 5.9-27.9 times higher(p<0.01). In addition, according to the result of investigating pollutant concentrations according to displacement and the number of car loaded when shipping gasoline cars into the ship, no significant relation between the number of cars loaded and pollutants was observed in shipping passenger cars, but the concentrations of nitrogen dioxide and carbon monoxide got somewhat higher with the increase of the number of cars loaded(p<0.05). In addition, the concentrations of nitrogen dioxide, carbon monoxide, PM10 and PM2.5 in the air were significantly higher when shipping recreational vehicles, the displacement of which is larger than passenger cars, than when shipping passenger cars(p<0.01). On the other hand, the average heavy metal concentrations of the air in indoor workshop were: lead $-0.05{\mu}g/m^3$(${\pm}0.10$); chromium $-0.90{\mu}g/m^3$(${\pm}0.18$); zinc $-0.38{\mu}g/m^3$(${\pm}0.24$); copper $-0.18{\mu}g/m^3$(${\pm}0.22$); and manganese and cadmium not detected. In addition, the complaining rates of 'asthma,' a major symptom of chronic respiratory diseases, were 18.5% and 22.5% respectively in indoor workers and outdoor workers. Thus the rate was somewhat higher in indoor workers but the difference was not statistically significant. The complaining rates of 'chronic cough' and 'chronic phlegm' were very low and little different between indoor and outdoor workers. The results of this study show that the reason for the higher air pollution in indoor than in outdoor workshop is incomplete combustion of fuel due to sudden start and over-speed when cars are driven inside the ship. In order to prevent high air pollution, efficient management measures should be taken including the observance of the optimal speed, the improvement of old ships and the installation of efficient ventilation system.

Pattern Classification of PM -10 in the Indoor Environment Using Disjoint Principal Component Analysis (분산주성분 분석을 이용한 실내환경 중 PM-10 오염의 패턴분류)

  • 남보현;황인조;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.1
    • /
    • pp.25-37
    • /
    • 2002
  • The purpose of the study was to survey the distribution patterns of inorganic elements of PM-10 in the various indoor environments and analyze the pollution patterns of aerosol in various places of indoor environment using a pattern recognition method based on cluster analysis and disjoint principal component analysis. A total of 40 samples in the indoor had been collected using mini-vol portable samplers. These samples were analyzed for their 19 bulk inorganic compounds such as B, Na, Mg, Al, K, Ca, Ti, V, Cr, Fe, Ni, Cu, Zn, As, Se, Cd, Ba, Ce, and Pb by using an ICP-MS. By applying a disjoint principal component analysis, four patterns of the indoor air pollutions were distinguished. The first pattern was identified as a group with high concentrations of PM-10, Na, Mg, and Ca. The second pattern was identified as a group with high concentrations B, Mg, At, Ca, Fe, Cu, and Ba. The third pattern was a group of sites with high concentrations of K, Zn. Cd. The fourth pattern was a group with low concentrations PM-10 and all inorganic elements. This methodology was found to be helpful enough to set the criteria standard of indoor air quality, corresponding pollutants, and classification of indoor environment categories when making an indoor air quality law.