• Title/Summary/Keyword: Individual tree detection

Search Result 30, Processing Time 0.027 seconds

Detection of Urban Trees Using YOLOv5 from Aerial Images (항공영상으로부터 YOLOv5를 이용한 도심수목 탐지)

  • Park, Che-Won;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1633-1641
    • /
    • 2022
  • Urban population concentration and indiscriminate development are causing various environmental problems such as air pollution and heat island phenomena, and causing human resources to deteriorate the damage caused by natural disasters. Urban trees have been proposed as a solution to these urban problems, and actually play an important role, such as providing environmental improvement functions. Accordingly, quantitative measurement and analysis of individual trees in urban trees are required to understand the effect of trees on the urban environment. However, the complexity and diversity of urban trees have a problem of lowering the accuracy of single tree detection. Therefore, we conducted a study to effectively detect trees in Dongjak-gu using high-resolution aerial images that enable effective detection of tree objects and You Only Look Once Version 5 (YOLOv5), which showed excellent performance in object detection. Labeling guidelines for the construction of tree AI learning datasets were generated, and box annotation was performed on Dongjak-gu trees based on this. We tested various scale YOLOv5 models from the constructed dataset and adopted the optimal model to perform more efficient urban tree detection, resulting in significant results of mean Average Precision (mAP) 0.663.

Estimation of Carbon Dioxide Stocks in Forest Using Airborne LiDAR Data (항공 LiDAR 데이터를 이용한 산림의 이산화탄소 고정량 추정)

  • Lee, Sang-Jin;Choi, Yun-Soo;Yoon, Ha-Su
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.259-268
    • /
    • 2012
  • This paper aims to estimate the carbon dioxide stocks in forests using airborne LiDAR data with a density of approximate 4.4 points per meter square. To achieve this goal, a processing chain consisting of bare earth Digital Terrain Model(DTM) extraction and individual tree top detection has been developed. As results of this experiment, the reliable DTM with type-II errors of 3.32% and tree positions with overall accuracy of 66.26% were extracted in the study area. The total estimated carbon dioxide stocks in the study area using extracted 3-D forests structures well suited with the traditional method by field measurements upto 7.2% error level. This results showed that LiDAR technology is highly valuable for replacing the existing forest resources inventory.

Detection of Forest Areas using Airborne LIDAR Data (항공 라이다데이터를 이용한 산림영역 탐지)

  • Hwang, Se-Ran;Kim, Seong-Joon;Lee, Im-Pyeong
    • Spatial Information Research
    • /
    • v.18 no.3
    • /
    • pp.23-32
    • /
    • 2010
  • LIDAR data are useful for forest applications such as bare-earth DEM generation for forest areas, and estimation of tree height and forest biomass. As a core preprocessing procedure for most forest applications, this study attempts to develop an efficient method to detect forest areas from LIDAR data. First, we suggest three perceptual cues based on multiple return characteristics, height deviation and spatial distribution, being expected as reliable perceptual cues for forest area detection from LIDAR data. We then classify the potential forest areas based on the individual cue and refine them with a bi-morphological process to eliminate falsely detected areas and smoothing the boundaries. The final refined forest areas have been compared with the reference data manually generated with an aerial image. All the methods based on three types of cues show the accuracy of more than 90%. Particularly, the method based on multiple returns is slightly better than other two cues in terms of the simplicity and accuracy. Also, it is shown that the combination of the individual results from each cue can enhance the classification accuracy.

Detection of Individual Tree Species Using Object-Based Classification Method with Unmanned Aerial Vehicle (UAV) Imagery

  • Park, Jeongmook;Sim, Woodam;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.3
    • /
    • pp.181-188
    • /
    • 2019
  • This study was performed to construct tree species classification map according to three information types (spectral information, texture information, and spectral and texture information) by altitude (30 m, 60 m, 90 m) using the unmanned aerial vehicle images and the object-based classification method, and to evaluate the concordance rate through field survey data. The object-based, optimal weighted values by altitude were 176 for 30 m images, 111 for 60 m images, and 108 for 90 m images in the case of Scale while 0.4/0.6, 0.5/0.5, in the case of the shape/color and compactness/smoothness respectively regardless of the altitude. The overall accuracy according to the type of information by altitude, the information on spectral and texture information was about 88% in the case of 30 m and the spectral information was about 98% and about 86% in the case of 60 m and 90 m respectively showing the highest rates. The concordance rate with the field survey data per tree species was the highest with about 92% in the case of Pinus densiflora at 30 m, about 100% in the case of Prunus sargentii Rehder tree at 60 m, and about 89% in the case of Robinia pseudoacacia L. at 90 m.

A Collision detection from division space for performance improvement of MMORPG game engine (MMORPG 게임엔진의 성능개선을 위한 분할공간에서의 충돌검출)

  • Lee, Sung-Ug
    • The KIPS Transactions:PartB
    • /
    • v.10B no.5
    • /
    • pp.567-574
    • /
    • 2003
  • Application field of third dimension graphic is becoming diversification by the fast development of hardware recently. Various theory of details technology necessary to design game such as 3D MMORPG (Massive Multi-play Online Role Flaying Game) that do with third dimension. Cyber city should be absorbed. It is the detection speed that this treatise is necessary in game engine design. 3D MMORPG game engine has much factor that influence to speed as well as rendering processing because it express huge third dimension city´s grate many building and individual fast effectively by real time. This treatise nay get concept about the collision in 3D MMORPG and detection speed elevation of game engine through improved detection method. Space division is need to process fast dynamically wide outside that is 3D MMORPG´s main detection target. 3D is constructed with tree construct individual that need collision using processing geometry dataset that is given through new graph. We may search individual that need in collision detection and improve the collision detection speed as using hierarchical bounding box that use it with detection volume. Octree that will use by division octree is used mainly to express rightly static object but this paper use limited OSP by limited space division structure to use this in dynamic environment. Limited OSP space use limited space with method that divide square to classify typically complicated 3D space´s object. Through this detection, this paper propose follow contents, first, this detection may judge collision detection at early time without doing all polygon´s collision examination. Second, this paper may improve detection efficiency of game engine through and then reduce detection time because detection time of bounding box´s collision detection.

Estimation of Individual Tree and Tree Height using Color Aerial Photograph and LiDAR Data (컬러항공사진과 LiDAR 데이터를 이용한 수목 개체 및 수고 추정)

  • Chang, An-Jin;Kim, Yong-Il;Lee, Byung-Kil;Yu, Ki-Yun
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.543-551
    • /
    • 2006
  • Recently efforts to extract information about forests by using remote sensing techniques for efficient forest management have progressed actively. In terms of extraction of tree information using single remote sensing data, however, the accuracy of tree recognition and the quantity of extracted information is limited. The objective of this study is to carry out tree modeling in domestic environment applying the latest core technique for tree modeling using color aerial photographs and LiDAR data and to estimate the result of tree modeling. A small-scale coniferous forest was investigated in Daejeon. It was 0.77 that the $R^2$ of accuracy test of tree numbers that estimated with color aerial photography and LiDAR data. In terms of tree height, there was no difference between the estimated value and the field measurements in the case of the group accuracy test of the recently unchanged area. Moreover $R^2$ was 0.83 in the case of the individual accuracy test.

Effective Normalization Method for Fraud Detection Using a Decision Tree (의사결정나무를 이용한 이상금융거래 탐지 정규화 방법에 관한 연구)

  • Park, Jae Hoon;Kim, Huy Kang;Kim, Eunjin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.1
    • /
    • pp.133-146
    • /
    • 2015
  • Ever sophisticated e-finance fraud techniques have led to an increasing number of reported phishing incidents. Financial authorities, in response, have recommended that we enhance existing Fraud Detection Systems (FDS) of banks and other financial institutions. FDSs are systems designed to prevent e-finance accidents through real-time access and validity checks on client transactions. The effectiveness of an FDS depends largely on how fast it can analyze and detect abnormalities in large amounts of customer transaction data. In this study we detect fraudulent transaction patterns and establish detection rules through e-finance accident data analyses. Abnormalities are flagged by comparing individual client transaction patterns with client profiles, using the ruleset. We propose an effective flagging method that uses decision trees to normalize detection rules. In demonstration, we extracted customer usage patterns, customer profile informations and detection rules from the e-finance accident data of an actual domestic(Korean) bank. We then compared the results of our decision tree-normalized detection rules with the results of a sequential detection and confirmed the efficiency of our methods.

Application of LiDAR for Measuring Individual Trees and Forest Stands (개체목 및 임분조사를 위한 LiDAR 응용에 관한 연구)

  • Kwak, Doo Ahn;Lee, Woo Kyun;Son, Min Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.431-440
    • /
    • 2005
  • Location, height and clear-length of individual tree can be measured directly by LiDAR Remote Sensing, and dbh(diameter at breast height) can be estimated indirectly by tree height measured by LiDAR. In addition, stand volume and stand biomass are computed from estimated growth factors. In this study, each estimated growth factor was compared to the field measurements to validate accuracy. The coefficient of determination of total tree heights was 0.66 for total trees, 0.68 for Pinus koraiensis, 0.66 for Larix leptolepis and 0.60 for Quercus spp. The coefficient of determination of clear-length was 0.79 for total trees, 0.73 for Pinus koraiensis, 0.79 for Larix leptolepis, 0.68 for Quercus spp. The coefficient of determination of dbh predicted was 0.73 for Pinus koraiensis, 0.73 for Larix leptolepis and 0.85 for Quercus spp. Moreover The coefficient of determination of basal area was 0.82 for Pinus koraiensis, 0.92 for Larix leptolepis and 0.95 for Quercus spp. Biomass per ha computed by growth factor using LiDAR was 40,306 dm/ha for Pinus koraiensis, 94,150 tdm/ha for Larix leptolepis and 94,481 tdm/ha for Quercus spp. by species.

The Effect of Urban Trees on Residential Solar Energy Potential (도심 수목이 분산형 주거 태양광에너지 잠재량에 미치는 영향)

  • Ko, Yekang
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.1
    • /
    • pp.41-49
    • /
    • 2014
  • This study spatially assesses the impact of trees on residential rooftop solar energy potential using urban three-dimensional models derived from Light Detection and Ranging(LiDAR) data in San Francisco, California. In recent years on-site solar energy generation in cities has become an essential agenda in municipal climate action plans. However, it can be limited by neighboring environments such as shade from topography, buildings and trees. Of all these effects, the impact of trees on rooftop photovoltaics(PVs) requires careful attention because improper situation of solar panels without considering trees can result in inefficient solar energy generation, tree removal, and/or increasing building energy demand and urban heat island effect. Using ArcMap 9.3.1, we calculated the incoming annual solar radiation on individual rooftops in San Francisco and the reduced insolation affected by trees. Furthermore, we performed a multiple regression analysis to see what attributes of trees in a neighborhood(tree density, tree heights, and the variance of tree heights) affect rooftop insolation. The result shows that annual total residential rooftops insolation in San Francisco is 18,326,671 MWh and annual total light-loss reduction caused by trees is 326,406 MWh, which is about 1.78%. The annual insolation shows a wide range of values from $34.4kWh/m^2/year$ to $1,348.4kWh/m^2/year$. The result spatially maps the locations that show the various levels of impact from trees. The result from multiple regression shows that tree density, average tree heights and the variation of tree heights in a neighborhood have statistically significant effects on the rooftop solar potential. The results can be linked to municipal energy planning in order to manage potential conflicts as cities with low to medium population density begin implementing on-site solar energy generation. Rooftop solar energy generation makes the best contribution towards achieving sustainability when PVs are optimally located while pursuing the preservation of urban trees.

Analysis of Lipids in Deciduous Teeth by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI MS)

  • Lee, Yujin;Seo, Eunji;Park, Tae-Min;Bae, Kwang-Hak;Cha, Sangwon
    • Mass Spectrometry Letters
    • /
    • v.8 no.4
    • /
    • pp.105-108
    • /
    • 2017
  • Recently, deciduous teeth have been proposed as a promising biomatrix for estimating internal and external chemical exposures of an individual from prenatal periods to early childhood. Therefore, detection of organic chemicals in teeth has received increasing attention. Organic materials in tooth matrix are mostly collagen type proteins, but lipids and other small organic chemicals are also present in the tooth matrix. In this study, matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) was employed to obtain lipid fingerprints from deciduous teeth. Phospholipids and triacylglcerols (TAGs) from deciduous teeth were successfully detected by MALDI MS with 2,5-dihydroxybenzoic acid (DHB) or gold nanoparticle (AuNP) as a matrix.