• Title/Summary/Keyword: Individual particles

Search Result 175, Processing Time 0.028 seconds

Micro-PIXE as a Technique for Multi-elemental Detection and Localization in Various Atmospheric Environmental Samples

  • Ma, Chang-Jin;Choi, Sung-Boo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.E1
    • /
    • pp.54-62
    • /
    • 2008
  • Microbeam PIXE, often called micro-PIXE, is one of powerful tools for analyzing a wide range of elements for various samples. Moreover, it has important applications of interest to the atmospheric science. In the present study, a qualitative elemental imagination for various atmospheric environmental species was attempted using micro-PIXE. Especially, in combination with a novel individual droplet collection method and the micro-PIXE analytical technique, the chemical specification of various individual atmospheric samples could be carried out. Here, we briefly introduce the results of an application of micro-PIXE to the study of atmospheric environment. The detailed spatial resolution of multiple elements for various samples like individual ambient particles, individual raindrops, individual fog droplets, and individual snow crystals could be successfully achieved by scanning 2.6 MeV $H^+$ micro beam ($1{\sim}2{\mu}m$) accelerated by 3 MeV single-end accelerator.

Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol

  • Kwak, Ki-Yuel;Kim, Chong-Youp
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.2
    • /
    • pp.35-40
    • /
    • 2005
  • Nanofluid is a novel heat transfer fluid prepared by dispersing nanometer-sized solid particles in traditional heat transfer fluid to increase thermal conductivity and heat transfer performance. In this research we have considered the rheological properties of nanofluids made of CuO particles of 10-30nm in length and ethylene glycol in conjunction with the thermal conductivity enhancement. When examined using TEM, individual CuO particles have the shape of prolate spheroid of the aspect ratio of 3 and most of the particles are under aggregated states even after sonication for a prolonged period. From the rheological property it has been found that the volume fraction at the dilute limit is 0.002, which is much smaller than the value based on the shape and size of individual particles due to aggregation of particles. At the semi-dilute regime, the zero shear viscosity follows the Doi-Edwards theory on rodlike particles. The thermal conductivity measurement shows that substantial enhancement in thermal conductivity with respect to particle concentration is attainable only when particle concentration is below the dilute limit.

A Study on individual Diesel Particles by SEM/EDX (SEM/EDX를 이용한 디젤 분진의 입자별 분석)

  • 김혜진;이종태;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.2
    • /
    • pp.175-182
    • /
    • 1999
  • Scanning electron microscopy (SEM) has played an important role in receptor modeling area because it is a powerful tool for characterizing individual particles. The purpose of the study was to classify individual diesel particles base on statistical analysis and image analysis by SEM/EDX (energy dispersive x-ray analyser). The diesel particles were sampled by both a modified CVS 75 mode and a high speed mode with a chassis dynamometer. The SEM/EDX system provides various physical parameters including particle's particle diameter and chemical information. Thus density and mass of the diesel particle were estimated cased on its chemical composition and further fractal dimensions of the diesel particle were obtained by the Hurst exponent method. The fractal dimension in the sample of modified CVS 75 mode was higher than the high speed mode. Finally, mass fractions for a diesel vehicle as a source profile were estimated cased on a particle class concept.

  • PDF

The Chemical Nature of Individual Size-resolved Raindrops and Their Residual Particles Collected during High Atmospheric Loading for PM2.5

  • Ma, Chang-Jin;Sera, Koichiro
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.176-183
    • /
    • 2017
  • Although it is well known that rain plays an important role in capturing air pollutants, its quantitative evaluation has not been done enough. In this study, the effect of raindrop size on pollutant scavenging was investigated by clarifying the chemical nature of individual size-resolved raindrops and their residual particles. Raindrops as a function of their size were collected using the raindrop collector devised by our oneself in previous study (Ma et al., 2000) during high atmospheric loading for $PM_{2.5}$. Elemental analyses of solid residues and individual residual particles in raindrops were subsequently analyzed by Particle Induced X-ray Emission (PIXE) and Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDX), respectively. The raindrop number concentration ($m^{-2}h^{-1}$) tended to drastically decrease as the drop size goes up. Particle scavenging rate, $R_{sca.}$ (%), based on the actual measurement values were 38.7, 69.5, and 80.8% for the particles with 0.3-0.5, 0.5-1.0, and $1.0-2.0{\mu}m$ diameter, respectively. S, Ca, Si, and Al ranked relatively high concentration in raindrops, especially small ones. Most of the element showed a continuous decrease in concentration with increasing raindrop diameter. The source profile by factor analysis for the components of residual particles indicated that the rainfall plays a valuable role in scavenging natural as well as artificial particles from the dirty atmosphere.

Seasonal Characterization of Particles in Busan Area (부산지역 먼지입자의 계절별 특성)

  • Kang Shin-Mook;Cho Jeong-Goo
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.3 s.57
    • /
    • pp.17-26
    • /
    • 2005
  • Many researches were focused on the data which obtained from chemical bulk analysis. It is difficult to evaluate source contribution by wet type chemical bulk analysis. In this study, we have reviewed the characterization of individual particle for source identification. We analyzed by SEM/EDX methods. We have obtained average geometric particle diameter measured by optical diameter which were resulted from SEM/EDX image scan, representative physical diameter of individual particle was $3.38\;{\mu}m\;in\;A,\;3.67\;{\mu}m\;in\;B$. In the result of image analysis at each spots particles, both samples non-sphere shapes, C-rich particles. In consequence of chemical analysis of individual particle, each sampling sites some elements.

Application of Microbeam Technique to Atmospheric Science

  • Ma Chang-Jin
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2005.11a
    • /
    • pp.67-74
    • /
    • 2005
  • Microbeam PIXE, often called micro-PIXE, is a powerful tool tot analyzing a wide range of elements for various samples, as well as, it has important applications of interest to the atmospheric science. In this study, qualitative elemental imagination for various atmospheric environmental species was attempted using micro-PIXE. Here, we present the results of an application of micro-PIXE to the study of atmospheric environment. The detailed spatial resolution of multiple elements lot various samples like individual ambient particles, individual raindrops, individual fog droplets, and individual snow crystals could be successfully achieved by scanning 2.6 MeV H+ micro beam (1-2 ${\mu}m$) accelerated by 3 MV single-end accelerator.

  • PDF

Characterization of Individual Atmospheric Particles, Collected in Susan, Korea, Using Low-Z Electron Probe X-ray Microanalysis (Low-Z Electron Probe X-ray Microanalysis 분석법을 이용한 해안인근 지역의 대기입자 분석)

  • 김혜경;노철언
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.503-513
    • /
    • 2003
  • A single particle analytical technique, called low-Z electron probe X-ray microanalysis (low-Z EPMA) was applied to characterize atmospheric particles collected in Busan, Korea, over a daytime period in Dec. 2001. The ability to quantitatively analyze the low-Z elements, such as C, N, and 0, in microscopic volume enables the low-Z EPMA to specify the chemical composition of individual atmospheric particle. Various types of atmospheric particles such as organics, carbon-rich, aluminosilicates, silicon oxide, calcium carbonate, iron oxide, sodium chloride, sodium nitrate, ammonium sulfate, and titanium oxide were identified. In the sample collected in Busan, sodium nitrate particles produced as a result of the reaction between sea salt and nitrogen oxides in the atmosphere were most abundantly encountered both in the coarse and fine fractions. On the contrary, original sea salt particles were rarely observed. The fact that most of the carbonaceous particles were distributed in the fine fraction implies that their origin is anthropogenic.

Extraction of Sizes and Velocities of Spray Droplets by Optical Imaging Method

  • Choo, Yeonjun;Kang, Boseon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1236-1245
    • /
    • 2004
  • In this study, an optical imaging method was developed for the measurements of the sizes and velocities of droplets in sprays. Double-exposure single-frame spray images were captured by the imaging system. An image processing program was developed for the measurements of the sizes and positions of individual particles including separation of the overlapped particles and particle tracking and pairing at two time instants. To recognize and separate overlapping particles, the morphological method based on watershed segmentation as well as separation using the perimeter and convex hull of image was used consecutively. Better results in separation were obtained by utilization of both methods especially for the multiple or heavily-overlapped particles. The match probability method was adopted for particle tracking and pairing after identifying the positions of individual particles and it produced good matching results even for large particles like droplets in sprays. Therefore, the developed optical imaging method could provide a reliable way of analyzing the motion and size distribution of droplets produced by various sprays and atomization devices.

Characteristics of Individual Particles for PM2.5 Collected around Busan North Port (부산 북항 주변지역에서 포집된 PM2.5의 개별입자 특성)

  • Hyun, Sangmin;Cheon, Seong-Woo;Kim, Wonnyon;Kang, Nayeon;Park, Jeong-Ho
    • Journal of Environmental Science International
    • /
    • v.31 no.9
    • /
    • pp.781-791
    • /
    • 2022
  • In order to investigate the characteristics of the effects of various emission sources such as ships around the Busan North Port area, PM2.5 samples were analyzed by SEM/EDS (scanning electron microscopy with energy dispersive x-ray spectrometer). In the port city Busan, the main emission source of PM2.5 is ships, and soot was observed as the main exhaust particles of a ship diesel engine. As a result of the individual particle analysis of PM2.5 at the sampling site, carbonaceous particles such as soot and water droplet-shaped, which are considered to be exhausted from ships, were constantly observed. And some spherical Fe-rich particles also appeared.

Physico-chemical characterization of individual particles emitted from the air pollution point sources (대기 점오염원에서 배출되는 개별입자상물질의 물리화학적 특성)

  • Park Jeong-Ho;Suh Jeong-Min
    • Journal of Environmental Science International
    • /
    • v.14 no.8
    • /
    • pp.761-770
    • /
    • 2005
  • Scanning electron microscopy / energy dispersive X-ray analyzer(SEM/EDX) has played an important role for evaluation the source of atmospheric particle because it is a powerful tool for characterizing individual particles. The SEM/EDX system provides various physical parameters like optical diameter, as well as chemical information for a particle-by-particle basis. The purpose of the study was to classify individual particle emitted from the point sources based on clustering analysis and physico-chemical analysis by SEM/EDX. The total of 490 individual particle were analyzed at 8 point sources including coal-fired power plant, incinerator, H-C oil boiler, and metal manufacturing industry. The main components were Si and AI in the coal-fired power plant, Cl and Na in the domestic waste Incinerator, S in the H-C oil boiler and S and Fe in the metal manufactory industry, respectively.