• Title/Summary/Keyword: Indium tin oxide (ITO) electrode

Search Result 209, Processing Time 0.032 seconds

Effect of Oxygen Pressure on the properties of Ga-doped ZnO Thin Films Prepared by Pulsed Laser Deposition at Low Temperature (PLD로 저온 증착한 Ga-doped ZnO 박막의 산소 분압에 따른 영향)

  • Moon, Sung-Joon;Kim, Ji-Hong;Roh, Ji-Hyung;Kim, Jae-Won;Do, Kang-Min;Moon, Byung-Moo;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.297-297
    • /
    • 2010
  • Transparent conductive Oxide (TCO) is an essential material in the various optoelectronic applications as a transparent electrode, such as solar cells, flat panel displays and organic light emitting diodes. Currently, Indium tin oxide (ITO) is commonly used in industry due to its low electrical resistivity, high transmittance and high adhesion to substrate. However, ITO is expensive and should be prepared at high temperature, which makes it hard to use ITO in flexible devices. In this regard, Ga-doped ZnO is expected as an ideal candidate for replacing ITO.

  • PDF

Analysis on the Electrical.optical Properties and fabrication of OLED with AZO Anode Electrode (AZO Anode 전극을 적용한 OLED 소자의 제작과 전기적.광학적 특성 분석)

  • Jin, Eun-Mi;Shin, Eun-Chul;Kim, Tae-Wan;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.357-362
    • /
    • 2007
  • AZO(Aluminum-doped Zinc Oxide) films are attractive materials as transparent conductive electrode because they are inexpensive, nontoxic and abundant element compared with ITO(Indium Tin Oxide). AZO films have been deposited on glass (corning 1737) substrates by RF magnetron sputtering. The AZO film was post-annealed at $600^{\circ}C$ for 2 hr with $N_2$ atmosphere. The AZO films were used as an anode contact to fabricate OLEDs(Organic Light Emitting Diodes). OLEDs with $AZO/TPD/Alq_3/Al$ configuration were fabricated by thermal evaporation. We investigated that the electric, structural and optical properties of AZO thin films, which measured using the methods of XRD, SEM, Hall measurement and Spectrophotometer. The current density-voltage and luminescence-voltage properties of devices were studied and compared with ITO devices fabricated under the same conditions.

A Study on the Optimization of the ITO/Ag/ITO Multilayer Transparent Electrode by Using In-line Magnetron Sputtering (인라인 마그네트론 스퍼티링에 의한 ITO/Ag/ITO 다층 구조 투명전극의 최적화에 관한 연구)

  • Lee, Seung Yong;Yoon, Yeo Tak;Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.162-169
    • /
    • 2017
  • Indium tin oxide (ITO) thin films show a low sheet resistance and high transmittance in the visible range of the spectrum. Therefore, they play an important role as transparent electrodes for flat panel displays. However, their resistivity is rather high for use as a transparent electrode in large displays. One way to improve electrical and optical properties in large displays is to use ITO/Ag/ITO multilayer films. ITO/Ag/ITO multilayer films have lower sheet resistance than single layer ITO films with the same thickness. Prior to the ITO/Ag/ITO multilayer experiments, optimal condition for thickness change are necessary. Their thicknesses were deposited differently in order to analyze electrical and optical properties. However, when optimal single film characteristics are applied to ITO/Ag/ITO multilayer films, other phenomena appeared. After analyzing the electrical and optical properties by changing ITO and Ag film thickness, ITO/Ag/ITO multilayer films were optimized. By combining ITO film at $586\;{\AA}$ and Ag film at 10 nm, the ITO/Ag/ITO multilayer films showed optimized high optical transmittance of 87.65%, and the low sheet resistance of $5.5{\Omega}/sq$.

The fabrication of Pt electroplating on ITO multi-electrode array in neuronal signal detection (전극의 임피던스 감소를 위해 백금 도금한 ITO 신경신호 검출용 다중 전극 제작)

  • Kwon, Gwang-Min;Choi, Joon-Ho;Lee, Kyoung-J.;Pak, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.257-259
    • /
    • 2002
  • In investigating the characteristics of a neural network, the use of planar microelectrode array shows several advantages over normal intracellular recording[1]. A transparent indium tin oxide(ITO) multi-electrode array(MEA) was fabricated and its top surface was insulated with photodefinable polyimide(HD-8001) except the exposed area for interfacing between the ITO electrodes and the neuronal cells. The exposed ITO electrodes were platinized in order to reduce the impedance between the electrodes and electrolyte. The one-minute platinization with $0.99nA/{\mu}m^2$ current density reduced the average impedance of the electrodes from $2.5M\Omega\;to\;90k\Omega$ at 1kHz in normal ringer solution. Cardiac cells were cultured on this MEA as a pilot study before neuron culture. The signals detected by the platinized electrodes had larger amplitudes and improved signal to noise ratio(SNR) compared to non-platinized electrodes. It is clear that microelectrodes need to have lower impedance to make reliable extracellular recordings, and thus platinization is essential part of MEA fabrication. Burst spike of cultured olfactory bulb was also detected with the MEA having platinized electrodes.

  • PDF

Low-Temperature Plasma Enhanced Chemical Vapor Deposition Process for Growth of Graphene on Copper

  • Ma, Yifei;Jang, Hae-Gyu;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.433-433
    • /
    • 2013
  • Graphene, $sp^2$-hybridized 2-Dimension carbon material, has drawn enormous attention due to its desirable performance of excellent properties. Graphene can be applied for many electronic devices such as field-effect transistors (FETs), touch screen, solar cells. Furthermore, indium tin oxide (ITO) is commercially used and sets the standard for transparent electrode. However, ITO has certain limitations, such as increasing cost due to indium scarcity, instability in acid and basic environments, high surface roughness and brittle. Due to those reasons, graphene will be a perfect substitute as a transparent electrode. We report the graphene synthesized by inductive coupled plasma enhanced chemical vapor deposition (ICP-PECVD) process on Cu substrate. The growth was carried out using low temperature at $400^{\circ}C$ rather than typical chemical vapor deposition (CVD) process at $1,000^{\circ}C$ The low-temperature process has advantage of low cost and also low melting point materials will be available to synthesize graphene as substrate, but the drawback is low quality. To improve the quality, the factor affect the quality of graphene was be investigated by changing the plasma power, the flow rate of precursors, the scenario of precursors. Then, graphene film's quality was investigated with Raman spectroscopy and sheet resistance and optical emission spectroscopy.

  • PDF

Photoelectrochemical Characteristics for Cathodic Electrodeposited Cu2O Film on Indium Tin Oxide (음극전착법을 이용한 Cu2O 막의 광전기 화학적 특성)

  • 이은호;정광덕;주오심;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.183-189
    • /
    • 2004
  • Cuprous oxide (Cu$_2$O) thin films are cathodically deposited on Indium Tin Oxide (ITO) substrate. The as-deposited films were heat-treated at 30$0^{\circ}C$ to obtain Cu$_2$O. After the heat treatment, the film was changed from Cu metal into Cu$_2$O phase. The phase, morphology and photocurrent density of the films were dependent on the preparation conditions of deposition time, applied voltage, and the duration of heat treatment. The Cu$_2$O films were characterized by X-Ray Diffractometer (XRD) and Scanning Electron Microscope (SEM). The apparent grain size of the films formed by the normal method was larger than those grown by the pulse method. The CU$_2$O film what was deposited at -0.7 V for 300 sec and then, calcined at 30$0^{\circ}C$ for 1 h showed the predominant photocurrent density of 1048 $\mu$A/$\textrm{cm}^2$. And the stability of Cu$_2$O electrodes were improved with chemically deposited TiO$_2$ thin films on Cu$_2$O.

The Effects of Oxygen Plasma and Cross-link Process on Quantum-dot Light Emitting Diodes

  • Cho, Nam-Kwang;Kang, Seong Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.215-215
    • /
    • 2014
  • Red color light emitting diodes (LEDs) were fabricated using CdSe/CdZnS quantum dots (QDs). During the device fabrication process, oxygen plasma treatment on the ITO surface was performed to improve the interfacial contact between ITO anode and the hole injection layer. CdSe/CdZnS quantum dots were cross-linked to remove their surrounded organic surfactants. The device shows red emission at 622 nm, which is consistent with the dimension of the QDs (band gap=1.99 eV). The luminance shows 6026% improvement compared with that of LEDs fabricated without oxygen plasma treatment and quantum dots cross-linking process. This approach would be useful for the fabrication of high-performance QLEDs with ITO electrode and PEDOT:PSS hole injection layers.

  • PDF

I-V Properties OLED by CMP Process (CMP 공정을 적용한 유기발광소자의 전압.전류 특성)

  • Choi, Gwon-Woo;Lee, Woo-Sun;Jun, Young-Kil;Jueng, Pan-Gum;Seo, Yong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1357-1358
    • /
    • 2006
  • Indium tin oxide (ITO) thin film is a transparent electrode, which is widely applied to solar battery, illuminators, optical switches, liquid crystal displays (LCDs), plasma display panels (PDPs), and organic light emitting displays (OLEDs) due to its easy formation on glass substrates, goof optical transmittance, and good conductivity. ITO thin film is generally fabricated by various methods such as spray, CVD, evaporation, electron gun deposition, direct current electroplating, high frequency sputtering, and reactive DC sputtering. However, some problems such as peaks, bumps, large particles, and pin-holes on the surface of ITO thin film were reported, which caused the destruction of color quality, the reduction of device life time, and short-circuit. Chemical mechanical polishing (CMP) processis one of the suitable solutions which could solve the problems.

  • PDF

Improvement of Optical and Electrical Properties of ITO/Ag/ITO Thin Films for Transparent Conducting Electrode (투명 전극 ITO/Ag/ITO 박막의 광학적 및 전기적 특성 향상 연구)

  • Shin, Yeon Bae;Kang, Dong-Won;Kim, Jeha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.11
    • /
    • pp.740-744
    • /
    • 2017
  • Herein we studied the electrical and optical properties of indium tin oxide ITO/Ag/ITO multilayer thin films for application in transparent conducting electrodes. The ITO and Ag thin films were deposited onto soda lime glass (SLG) using radiofrequency and DC-sputtering methods, respectively. The as-synthesized ITO/Ag/ITO multilayer thin films were analyzed using 4-point probe, UV-Visible spectroscopy, and Hall measurement. We observed a rapid increase in electron concentration with increasing Ag thickness. However, electron mobility decreased with increasing Ag thickness. Finally, ITO/Ag/ITO multilayer thin films showed a characteristic low sheet resistance of $18{\Omega}/sq$ and high optical transmittance value (80%) with variation of Ag thickness (5~10 nm).

ITO Patterning of an In-line Wet Etch/Cleaning System by using a Reverse Moving Control System (반송제어모드를 이용한 인라인 식각/세정장치의 ITO 전극형성기술)

  • Hong, Sung-Jae;Im, Seoung-Hyeok;Han, Hyung-Seok;Kwon, Sang-Jik;Cho, Eou-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.327-331
    • /
    • 2008
  • An in-line wet etch/cleaning system was established for the research and development in wet etch process as a formation of electrode such as metal or transparent conductive oxide layer. A reverse moving system was equipped in the in-line wet etch/cleaning system for the alternating motion of glass substrate in a wet etch bath of the system. Therefore, it was possible for the glass substrate to be moved back and forth and it was possible to reduce the size of the system by using the reversing moving system. For the effect of the alternating motion of substrate on the etch rate in the in-line wet etch bath, indium tin oxide(ITO) patterns were obtained through wet etch process in the in-line system in which the substrate was moved back and forth. From the CD(critical dimension) skews resulted from the ADI CD and ACI CD of the ITO patterns, it was concluded that the alternating motion of glass substrate are possible to be applied to the mass production of wet etch process.