• Title/Summary/Keyword: Indigenous acidophilic bacteria

Search Result 4, Processing Time 0.017 seconds

The Efficiency of Bioleaching Rates for Valuable Metal Ions from the Mine Waste Ore using the Adapted Indigenous Acidophilic Bacteria with Cu Ion (Cu 이온에 적응된 토착호산성박테리아를 이용한 폐광석으로부터 미생물용출 효율 향상)

  • Kim, Bong-Ju;Wi, Dae-Woong;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.4
    • /
    • pp.9-18
    • /
    • 2012
  • This study was carried out to leach valuable metal ions from the mine waste ore using the adapted indigenous bacteria. In order to tolerance the heavy metals, the indigenous bacteria were repeatedly subcultured in the adaptation-medium containing $CuSO_4{\cdot}5H_2O$ for 3 weeks and 6 weeks, respectively. As the adaptation experiment processed, the pH was rapidly decrease in the adaptation-medium of 6 weeks more than the 3 weeks. The result of bioleaching with the adapted bacteria for 42 days, the pH value of leaching-medium in the 3 weeks tend to increased, whereas the pH of the 6 weeks decreased. In decreasing the pH value in the adaptation-medium and in the leaching-medium, it was identified that the indigenous bacteria were adapted $Cu^{2+}$ the ion and the mine waste ores. The contents of Cu, Fe and Zn in the leaching solution were usually higher leached in 6 weeks than 3 weeks due to the adaptation. Considering the bioleaching rates of Cu, Fe and Zn from these leaching solutions, the highest increasing the efficiency metal ion were found to be Fe. Accordingly, it is expected that the more valuable element ions can be leached out from the any mine waste, if the adapted bacteria with heavy metals will apply in future bioleaching experiments.

The Characteristic of Selective Attachment and Bioleaching for Pyrite Using Indigenous Acidophilic Bacteria at $42^{\circ}C$ ($42^{\circ}C$에서 토착호산성박테리아의 황철석 표면에 대한 선택적 부착과 용출 특성)

  • Park, Cheon-Young;Kim, Soon-Oh;Kim, Bong-Ju
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.109-121
    • /
    • 2010
  • The bioleaching experiment under $42^{\circ}C$ was effectively carried out to leach the more valuable element ions from the pyrite in the Gangyang mine waste. Bacteria can survive at this temperature, as indigenous acidophilic bacteria were collected in the Hatchobaru acidic hot spring, in Japan. To enhance the bacterial activity, yeast extract was added to the pyrite-leaching medium. The indigenous acidophilic bacteria appeared to be rod-shaped in the growth-medium which contained elemental sulfur and yeast extract. The rod-shaped bacteria ($0.7\times2.6\;{\mu}m$, $0.6\times7\;{\mu}m$, $0.8\times5\;{\mu}m$ and $0.7\times8.4\;{\mu}m$) were attached to the pyrite surface. The colonies of the rod-shaped bacteria were selectively attached to the surroundings of a hexagonal cavity and the inner wall of the hexagonal cavity, which developed on a pyrite surface. Filament-shaped bacteria ranging from $4.92\;{\mu}m$ to $10.0\;{\mu}m$ in length were subsequently attached to the surrounding cracks and inner wall of the cracks on the pyrite surface. In the XRD analysis, the intensity of (111), (311), (222) and (320) plane on the bacteria pyrite sample relatively decreased in plane on the control pyrite sample, whereas the intensity of (200), (210) and (211) increased in these samples. The microbiological leaching content of Fe ions was found to be 3.4 times higher than that of the chemical leaching content. As for the Zn, microbiological leaching content, it was 2 times higher than the chemical leaching content. The results of XRD analysis for the bioleaching of pyrite indicated that the indigenous acidophilic bacteria are selectively attacked on the pyrite specific plane. It is expected that the more valuable element ions can be leached out from the mine waste, if the temperature is increased in future bioleaching experiments.

The Leaching of Valuable Metal from Mine Waste Rock by the Adaptation Effect and the Direct Oxidation with Indigenous Bacteria (토착박테리아의 중금속 적응효과와 직접산화작용에 의한 폐광석으로부터 유용금속 용출)

  • Kim, Bong-Ju;Cho, Kang-Hee;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.209-220
    • /
    • 2015
  • The aim of this study was leaching valuable metal ions from mine waste rocks which were abandoned mine site using indigenous aerobic bacteria. In order to tolerate the the indigenous aerobic bacteria to the heavy metal ions they were repeatedly adapted in $CuSO_4{\cdot}5H_2O$ environment. As the repeated generation-adaptation progressed, the pH values of the growth-medium were gradually decreased. During bio-leaching experiments with indigenous aerobic bacteria raised in a heavy metal ion environment for 42 days, the pH of the leaching solution was decreased while increasing the adaptation period. The indigeous bacteria were much more active on the surface of Younhwa waste rocks which contained relatively few the chalcopyrite and Cu content than the Goseong mine waste rocks, and also the amount of Cu and Fe ions were leached more in the Younhwa sample(leaching rate of 92.79% and 55.88%, respectively) than the Goseong sample(leaching rate of 66.77% and 21.83%, respectively). Accordingly, it is confirmed that valuable metal ions can be leached from the mine waste rocks, if any indigenous bacteria which inhabits a mine environment site for a long time with heavy metal ions can be used, and these bacteria can be progressively adapted in the growth-solutions containing the target heavy metals.

Bioleaching for Mine Waste of Pyrite by Indigenous Bacteria: Column Bioleaching at Room Temperature (토착박테리아를 이용한 광산찌꺼기 황철석으로부터 유용금속 이온 용출 특성: 상온에서 칼럼 용출)

  • Park, Cheon-Young;Cho, Kang-Hee
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.251-265
    • /
    • 2010
  • A column bioleaching experiment at room temperature with no addition of sulfuric acid was effectively carried out to leach the valuable elements from pyrite, which is common mine waste. The Fe concentration of pyrite leachate from bioleaching column was 14 times higher than that of the control leachate, and secondary minerals were not formed. The $SO_4^{2-}$ concentration of the pyrite leachate was 2.99 times higher. The XRD intensity of the (111), (200), (220), (311), (222), (230) and (321) planes of pyrite decreased, whereas the intensity of (210) and (211) increased after column bioleaching.