• Title/Summary/Keyword: Indicator Species

Search Result 640, Processing Time 0.025 seconds

Northward expansion trends and future potential distribution of a dragonfly Ischnura senegalensis Rambur under climate change using citizen science data in South Korea

  • Shin, Sookyung;Jung, Kwang Soo;Kang, Hong Gu;Dang, Ji-Hee;Kang, Doohee;Han, Jeong Eun;Kim, Jin Han
    • Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.313-327
    • /
    • 2021
  • Background: Citizen science is becoming a mainstream approach of baseline data collection to monitor biodiversity and climate change. Dragonflies (Odonata) have been ranked as the highest priority group in biodiversity monitoring for global warming. Ischnura senegalensis Rambur has been designated a biological indicator of climate change and is being monitored by the citizen science project "Korean Biodiversity Observation Network." This study has been performed to understand changes in the distribution range of I. senegalensis in response to climate change using citizen science data in South Korea. Results: We constructed a dataset of 397 distribution records for I. senegalensis, ranging from 1980 to 2020. The number of records sharply increased over time and space, and in particular, citizen science monitoring data accounted for the greatest proportion (58.7%) and covered the widest geographical range. This species was only distributed in the southern provinces until 2010 but was recorded in the higher latitudes such as Gangwon-do, Incheon, Seoul, and Gyeonggi-do (max. Paju-si, 37.70° latitude) by 2020. A species distribution model showed that the annual mean temperature (Bio1; 63.2%) and the maximum temperature of the warmest month (Bio5; 16.7%) were the most critical factors influencing its distribution. Future climate change scenarios have predicted an increase in suitable habitats for this species. Conclusions: This study is the first to show the northward expansion in the distribution range of I. senegalensis in response to climate warming in South Korea over the past 40 years. In particular, citizen science was crucial in supplying critical baseline data to detect the distribution change toward higher latitudes. Our results provide new insights on the value of citizen science as a tool for detecting the impact of climate change on ecosystems in South Korea.

Carabid beetle species as a biological indicator for different habitat types of agricultural landscapes in Korea

  • Kang, Bang-Hun;Lee, Joon-Ho;Park, Jong-Kyun
    • Journal of Ecology and Environment
    • /
    • v.35 no.1
    • /
    • pp.35-39
    • /
    • 2012
  • In the current study, several carabid beetle species were proposed as potential biological indicators for different habitat types (levee, upland dike, hillock, and streamside) of agricultural landscapes focusing on agrobiont species. Synuchus arcuaticollis and Synuchus orbicollis were found in all habitat types, indicating that they are general species for all habitat types. Harpalus eous and Synuchus cycloderus are potential bioindicator species for the paddy levee and hillock habitats, respectively. Amara pseudosimplicidens, Anisodactylus punctatipennis, and Chlaenius ocreatus, which occurred widely, and Bembidion morawitzi, which occurred only in the streamside habitat, are potential bioindicators for the streamside habitat.

Relationship between Tree Species Diversity and Carbon Stock Density in Moist Deciduous Forest of Western Himalayas, India

  • Shahid, Mohommad;Joshi, Shambhu Prasad
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.1
    • /
    • pp.39-48
    • /
    • 2017
  • With the growing global concern about climate change, relationship between carbon stock density and tree species has become important for international climate change mitigation programmes. In this study, 150 Quadrats were laid down to assess the diversity, biomass and carbon stocks in each of the forest ranges (Barkot Range, Lachchiwala Range and Thano Range) of Dehra Dun Forest Division in Doon Valley, Western Himalaya, India. Community level carbon stock density was analyzed using Two Way Indicator Species Analysis. Species Richness and Shannon Weiner index was correlated with the carbon stocks of Doon Valley. Positive and weak relationship was found between the carbon stock density and Shannon Weiner Index, and between carbon stock density and Species Richness.

Fish Community Structure in the Pyeongchanggang River

  • Choi, Jun-Kil
    • Animal Systematics, Evolution and Diversity
    • /
    • v.27 no.2
    • /
    • pp.151-158
    • /
    • 2011
  • Fish community structure in the Pyeongchanggang River was investigated from April to November 2009. About 900 individuals representing 24 species from eight families at six sites in the Pyeongchanggang River were collected. It was similar to the 2001's survey and it was less than 2006's survey. The Korean endemic species, Zacco koreanus was the most abundant, whereas subdominant species were native species, such as Pungtungia herzi, Zacco platypus, Rhynchocypris kumgangensis and Rhynchocypris oxycephalus. Three endangered species were collected at the sampling area, Acheilognathus signifier (relative abundance [RA] 0.9%), Pseudopungtungia tenuicorpa (RA 1.4%), and Cottus koreanus (RA 3.6%). One natural monument species, Hemibarbus mylodon, was included. According to the analysis of ecological indicator characteristics, the relative proportion of tolerant species was 6.3% (57 individuals), whereas the proportion of sensitive species was 65.9% (593 individuals). Species evenness, richness and diversity indices decreased gradually through the month from April to November during the study. Community indices in Pyeongchanggang River showed a high evenness index (J'>0.6), a low level of species richness (R<3.5) and a medium level of diversity (1.5

Species Composition and Stand Structure of Natural Forest, Timber-harvested Forest and Degraded Forest in the Bago Yoma Region of Myanmar

  • Oo, Thaung Naing;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.572-579
    • /
    • 2007
  • Tree species diversity is an important aspect of forest ecosystem stability. Tree species inventories at defined sites and in minimum diameter classes give a reliable indicator of the diversity level as well as the structural stability level of a study site. This study was conducted to investigate the species composition and the stand structure of the natural forest, timber-harvested forest (logged-over forest) and degraded forest of the Oak-twin Township in the Bago Yoma Region of Myanmar. Natural forest showed the highest family and species richness in all the investigated forests. At the family level, Verbenaceae occupied the highest importance value index (IVI) in all the forest stands while teak (Tectona grandis Linn. f.) occupied the highest IVI at the species level. However, the small diameter classes of T. grandis and other commercial species were less than those of big diameter classes in all the investigated forests. This abnormal pattern of diameter distribution could be a problem for the sustainable production of commercial timber species in the near future.

Using Tintinnid Distribution for Monitoring Water Mass Changes in the Northern East China Sea (북부 동중국해 수괴 변화 감시를 위한 유종섬모류 분포 적용)

  • Kim, Young-Ok;Noh, Jae-Hoon;Lee, Tae-Hee;Jang, Pung-Guk;Ju, Se-Jong;Choi, Dong-Lim
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.219-228
    • /
    • 2012
  • Tintinnid species distribution has been monitored in the northern East China Sea (ECS) in the summer of 2006 through 2011. This is used to understand the water mass movements in the northern ECS. The warm oceanic tintinnid species had largely spread in 2007 in the area, indicating that there was greater warm water extension into the northern ECS. However the extension of neritic water within the Changjiang diluted water mass has strengthened in 2008 and 2010 because the neritic species distribution had relatively grown in both years. These annual results based on the biological indicators of tintinnid species are well matched with the salinity change in the area. The warm oceanic species, Dadayiella ganymedes had frequently occurred over the study years and had shown a significant relationship with the salinity change. This is valuable as a key stone species for monitoring the intrusion of the Kuroshio within the northern ECS. Information from tintinnid biological indicators can support physical oceanography data to confirm ambiguous water mass properties.

Distribution of Indicator Species of Copepods and Chaetognaths in the Southeastern Area of the Yellow Sea and Their Relationship to the Characteristics of Water Masses (황해 동남 해역의 수괴지표성 요각류 및 모악류의 분포와 수괴특성)

  • PARK Joo-Suck;LEE Sam-Seuk;KANG Young-Shil;LEE Byung-Don;HUH Sung-Hoi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.4
    • /
    • pp.251-264
    • /
    • 1992
  • Distribution of indicator species of copepods and chaetognaths were studied as an indicator species of water mass in the southeastern area of the Yellow Sea. Undinula darwini, Lucicutia flavicornis, Pleuromamma gracilis, Euchaeta resselli, Euchaeta plane and Sagitta enflata were found to be reliable indicator species for determining warm water mass. Of these species, E. plana and E. rusrelli have a weak tolerance on the low temperature. Sagitta crassa was indicator species of neritic waters; Sagitta bedoti was that of mixing waters. Centropages abdominalis represented neritic cold waters. In February, U darwini, L. flavicornis, P. gracilis, E. russelli, E. plana and S. enflata occurred in the western waters of Cheju-Do where warm waters over $14^{\circ}C$ occupied. Centropages abdominalis occurred in the northern area beyond Chindo with water temperature less than $10^{\circ}C$. E. plana, E. russelli and S. bedoti were found at the regions between Cheju-Do and Chindo where the water temperature was $12- 14^{\circ}C$ corresponding to the mixing waters. Based on cluster analysis and T-S diagram in February three different water masses were identified from the south to the north. In August, water masses were analyzed at two different layers, 0-20m and 20m- bottom layers, separated by bhermocline depth. In 0-20m layer, E. plana and E. russelli were found from the western waters of Cheju-Do to Daehuksando. In 20m- bottom layer, E. russelli and E plena occurred at the northwestern waters of Cheju-Do with the water temperature warmer than $12^{\circ}C.\;C.$ abdominalis was found at the northern area beyond Chindo. Based on the cluster analysis and T-S diagram in August three different water masses at 0-20m and 20m-bottom layers were identified from the coast to the offshore. C. abdominalis was found at the adjacent water of Chindo at 0-20m layer and the northern area beyond Chindo at 20m~bottom layer. This fact suggested that the cold water mass existed at tile adjacent waters of Chindo in summer.

  • PDF

A Study of the Butterfly Community of Mt. Gyeryong National Park, Korea (계룡산국립공원의 나비류 군집에 관한 연구)

  • Jeon, Sung-Jae;Cho, Young-Ho;Han, Yong-Gu;Kim, Young-Jin;Choi, Min-Joo;Park, Young-Jun;Nam, Sang-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.3
    • /
    • pp.348-361
    • /
    • 2012
  • Altitude is a factor that plays an important role in the diversity, richness and composition of species. Recently, much attention has been paid to the distribution of butterflies and insects according to altitude. The purpose of this article is to propose a method to preserve and manage species efficiently by reviewing the distribution of butterflies according to different altitudes in Mt. Gyeryong National Park. This study found that the number of species and individuals decreased as the altitude increased, possibly due to the increased amount of shade caused by the crown density. When analyzing the factors influencing the distribution of species other than altitude, it was found that the slope, vegetative colonies and hydrosphere distance were correlated with the change in species distribution. As these species are closely related to food plants, it may save time and reduce the cost as well as allow an efficient evaluation of the bio-diversity if these species are selected as biological indicator species suitable for detecting the changes in the forest. It is judged to be a more efficient means of species preservation to accumulate and quantify the materials regarding environmental elements such as the climate, microclimate and food plants, as this would allow the butterfly distribution to be estimated.

A Study on the Plants for Phenology of the Mt. Jiri National Park (지리산국립공원 식물종의 생물계절성 연구)

  • Shin, Jae Sung;Yu, Nan Hee;Kang, Hee Gon;Shin, Hyun Tak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.2
    • /
    • pp.47-57
    • /
    • 2011
  • This study monitored forest plant species vulnerable to climate change in Jiri Mountain, one of Korea's representative alpine regions, in order to securely preserve plant genetic resources susceptible to climate change and to utilize the results as basic data for bioclimatology prediction and management on a long-term basis. A majority of indicator plants tended to blossom one week to one month later in 2010 than in 2009. As with the blooming dates, the falling dates of blossoms became later in most species, with the exception for Weigela florida and Oplopanax elatus. Leaf bursting as well fell on later dates in a majority of species excluding Carpinus laxiflora and Cupressus sempervirens, displaying the most obvious differences among the data of analysis of the 2009-2010 physiological cycle changes. It is believed that was due to the fact that temperatures in February, March and April, which affect plants' blossoming and leaf bursting, were lower in 2010 than in 2009 and that cold temperatures in the winter lasted for a longer period in 2010 than in 2009. The dates of leaves being changed to red were similar in 2009 and 2010 by being or later or earlier by several weeks in 2010 than in 2009 without any regularity. Most species' leaves began to fall at similar dates in 2009 and 2010 or at later dates by one to two weeks in 2010 than in 2009. The temperature differences in late 2009 and late 2010 were not so large, resulting in similar dates of falling leaves, and gaps in several indicator plants' physiological cycles without any regularity can be attributed to each individual plant's physiological and environmental characteristics.