• 제목/요약/키워드: Indentation strength

검색결과 206건 처리시간 0.022초

계장화압입시험법을 이용한 비압흔관찰 브리넬 경도 평가 (Determination of Brinell Hardness through Instrumented Indentation Test without Observation of Residual Indent)

  • 김성훈;최열;권동일
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.578-585
    • /
    • 2004
  • Hardness test is performed for determination of the other properties, such as strength, wear resistance and deformation resistance, as well as hardness itself. And it is performed for prediction of residual lifetime by analysis of hardness reduction or hardness ratio. However, hardness test has limitation that observation of residual indent is needed for determination of hardness value, and that is the reason for not to be widely used in industrial field. Therefore, in this study, we performed researches to obtain Brinell hardness value from quantitative numerical formula by analysing relationship between indentation depths from indentation load-depth curve and mechanical properties such as work hardening exponent, yield strength and elastic modulus.

나노 인덴테이션의 하중-변위 곡선을 이용한 표면처리강판 코팅층의 기계적 특성 결정 (Determination of the mechanical properties of the coated layer in the sheet metal using load-displacement curve by nanoindentation technique)

  • 고영호;이정민;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.148-151
    • /
    • 2004
  • Mechanical properties such as Young's modulus and hardness of thin film in coated steel are difficult to determine by nano-indentation from the conventional analysis using the load-displacement curve. Therefore, an analysis of the nano-indentation loading curve was used to determine the Young's modulus, hardness and strain hardening exponent. A new method is recently being developed for plasticity properties of materials from nano-indentation. Elastic modulus of the thin films shows relatively small influence whereas yield strength and strain hardening are found to have significant effect on measured data. The load-displacement behavior of material tested with a Berkovich indenter and nano-indentation continuous stiffness method is used to measure the modulus and hardness through thin films.

  • PDF

나노 인덴테이션의 하중-변위 곡선을 이용한 용융아연도금 강판 코팅층의 기계적 특성 결정 (Determination of the Mechanical Properties of the Coated Layer in the Sheet Metal Using Load-Displacement Curve by Nanoindentation Technique)

  • 고영호;이정민;김병민
    • 소성∙가공
    • /
    • 제13권8호
    • /
    • pp.731-737
    • /
    • 2004
  • Mechanical properties such as Young's modulus and hardness of thin film in coated steel are difficult to determine by nano-indentation from the conventional analysis using the load-displacement curve. Therefore, an analysis of the nano-indentation loading-unloading curve was used to determine the Young's modulus, hardness. A new method is recently being developed for elastic-plastic properties of materials from nano-indentation. Elastic modulus of the thin films shows relatively small influence whereas yield strength is found to have significant effect on measured data. The load-displacement curves of material tested with a Berkovich indenter and nano-indentation continuous stiffness method is used to measure the modulus and hardness through thin films, and then these are computed using the analysis procedure. The developed neural networks apply also to obtain reliable mechanical properties.

소재의 안전전단을 위한 비파괴 압입 및 소형펀치 시험법 연구 (A Study of Non-destructive Indentation and Small Punch Tests for Monitoring Materials Reliability)

  • 옥명렬;주장복;이정환;안정훈;남승훈;이해무;권동일
    • 한국가스학회:학술대회논문집
    • /
    • 한국가스학회 1997년도 추계학술발표회 논문집
    • /
    • pp.78-85
    • /
    • 1997
  • Indentation and small punch tests are very powerful methods to monitor the materials reliability since they are very simple, easy and almost non-destructive. First, recently-developed continuous indentation test can provide the more material properties such as hardness, elastic modulus, yield strength, work-hardening exponent, etc., than the conventional hardness test. In our study, the true stress-strain curve was derived from the indentation load-depth curve for spherical indentation. In detail, the strain was able to be obtained from plastic depth/contact radius ratio, and the flow stress was from mean contact pressure through the analysis of elastic-plastic indentation stress field. Secondly, the small punch test was studied to evaluate the fracture toughness and defomation properties such as elastic modulus and yield strength. Like the indentation test, this test can be applied without severe damage of the target structure.

  • PDF

NONDESTRUCTIVE/IN-FIELD CHARACTERIZATION OF TENSILE PROPERTIES AND RESIDUAL STRESS OF WELDED STRUCTURES USING ADVANCED INDENTATION TECHNIQUE

  • Park, Yeol;Dongil Son;Kim, Kwang-Ho;Park, S. Joon;Jang, Jae-il;Dongil Kwon
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.668-674
    • /
    • 2002
  • Structural integrity assessment is indispensable for preventing catastrophic failure of industrial structures/components/facilities. This diagnosis of operating components should be done periodically for safe maintenance and economical repair. However, conventional standard methods for mechanical properties have the problems of bulky specimen, destructive and complex procedure of specimen sampling. Especially, the mechanical properties at welded zone including weldment and heat affected zone could not be evaluated individually due to their size requirement problem. So, an advanced indentation technique has been developed as a potential method for non-destructive testing of in-field structures. This technique measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation such as yield strength, tensile strength and work-hardening index. Also indentation technique can evaluate a residual stress based on the concept that indentation load-depth curves were shifted with the direction and the magnitude of residual stress applied to materials. In this study, we characterized the tensile properties and welding residual stress of various industrial facilities through the new techniques, and the results are introduced and discussed.

  • PDF

Y$_2$O$_3$ 를 첨가한 정방정 지르코니아에서의 접촉손상 및 강도저하 (Contact Damage and Strength Degradation of Yttria doped Tetragonal Zirconia Polycrystal)

  • 정연길;최성철
    • 한국세라믹학회지
    • /
    • 제35권5호
    • /
    • pp.429-436
    • /
    • 1998
  • The mechanical properties and damage mode of {{{{ {Y}_{2 } {O}_{3} }}-doped tetragonal (Y-TZP) can-didated as biomaterials were performed under indentation stress-strain curve critical load for yield and cracking strength degradation and fatigue behavior with Hertzian indentation tests. This material shows the brittle behavior which is confirmed by indentation stress-strain response. The critical load for cracking(Pc) is much higher than that for yields (Py) indicating crack resistance Strength were strongly dependant on contact area and there were no degradation when the indenter size was ${\gamma}$=3.18 mm suggesting that Y-TZP should be highly damage tolerant to the blunt contacts. Multi-cycle contact were found to be innocuous up to {{{{ {10 }^{6 } }} cycles at 500N and {{{{ {10 }^{5 } }} cycles at 1000N in water. On the other hand contacts at {{{{ {10 }^{6 } }} cycles at 1000 N in water did show some signs of incipient degradation. By contrast contacts with Vickers indenter pro-duced substantial strength losses at much lower loads suggesting that the mechanical integrity of this ma-terial would be compromised by inadvertent sharp contacts.

  • PDF

고속충격을 받는 CFRP 복합재료의 잔류강도 예측 (Prediction of Residual Strength of CFRP Subjected to High Velocity Impact)

  • 박근철;김문생
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.600-611
    • /
    • 1994
  • The purpose of this research is to propose a model for the prediction of residual strength. For this purpose, two-paremeter model based on Caprino's is developed and formulated by the ratio of indentation due to impact and normalized residual strength. The damage zone is considered only as an indentation. Impact tests are carried out on laminated composites by steel balls. Test material is carbon/epoxy laminate. The specimens are composed of $[{\pm}45^{\circ}/0^{\circ}/90^{\circ}]_2$ and $[\pm}45^{\circ}]_4$ stacking sequence and have $0.75^T{\times}0.26^W{\times}100^L(mm) dimension. A proposed model shows a good correlation with the experimental results And failure mechanism due to high impact velocity is discussed on CFRP laminates to examine the initiation and development of damage by fractography and ultrasonic image ststem. The effect of the unidirectional ply position on the residual strength is considered here.

향상된 구형 압입 물성평가법 (Enhanced Spherical Indentation Techniques for Property Evaluation)

  • 이형일;이진행
    • 대한기계학회논문집A
    • /
    • 제31권4호
    • /
    • pp.461-471
    • /
    • 2007
  • In this work, indentation theory of Lee $et al.^{(1)}$ for 6% indentation of indenter diameter is extended to an indentation theory for 20% indentation. For shallow indentation, the effect of friction on load-depth curve is negligible, but different materials can show nearly identical load-depth curves. On the basis of this observation, a new numerical approach to deep indentation techniques is proposed by examining the finite element solutions. With this new approach, from the load-depth curve, we obtain stress-strain curve and the values of Young's modulus, yield strength and strain-hardening exponent with an average error of less than 3%.

유리침윤 알루미나 및 스핀넬 복합체에 관한 연구 I. 미세구조 및 유리함량이 접촉손상 및 강동에 미치는 영향 (A Study on Glass-Infiltrated Alumina and Spinel Composite I. Effect of Microstructure and Glass Content on Contant Damage and Strength)

  • 정연길;최성철
    • 한국세라믹학회지
    • /
    • 제35권7호
    • /
    • pp.671-678
    • /
    • 1998
  • Hertzian indentation tests with sphere indenters were used to study the mechanical properties of glass-in-filtrated alumina and spinel composites and evaluated the effect of preform microstructure and evaluated the effect of preform microstructure and glass con-tents on contanct damage and strength. The spinel composite showed more brittle behavior than the alumina composite which is verified from indentation stress-strain curve cone cracks and quasi-plastic deformation developed at subsurface. Failure originated from either cone cracks(brittle mode) or deformation zone(quasi-plastic mode) above critical load for cracking(Pc) and yield ({{{{ {P }_{Y } }}) with the brittle mode more dominant in the spinels and the quasi-plastic mode more dominant in the aluminas. Even though brittle mode was dominant in the spinel composites the strength degradation from accumulation of damage above these critical loads was conspicuously small suggesting that the glass-infiltrated composites should be highly damage tolerant to the blunt contacts.

  • PDF