• Title/Summary/Keyword: Indentation Technique

Search Result 146, Processing Time 0.028 seconds

A Study on Nano/Micro Pattern Fabrication of Metals by Using Mechanical Machining and Selective Deposition Technique (기계적 가공과 무전해 선택적 증착기술을 이용한 나노/마이크로 금속패턴 제작에 관한 연구)

  • Cho Sang-Hyun;Youn Sung-Won;Kang Chung-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.171-177
    • /
    • 2006
  • This study was performed as a part of the research on the development of a maskless and electroless process for fabricating metal micro/nanostructures by using a nanoindenter and an electroless deposition technique. $2-{\mu}m$-deep indentation tests on Ni and Cu samples were performed. The elastic recovery of the Ni and Cu was 9.30% and 9.53% of the maximum penetration depth, respectively. The hardness and the elastic modulus were 1.56 GPa and 120 GPa for Ni and 1.51 GPa and 104 GPa for Cu. The effect of single-point diamond machining conditions such as the Berkovich tip orientation (0, 45, and $90^{\circ}$ ) and the normal load (0.1, 0.3, 0.5, 1, 3, and 5 mN), on both the deformation behavior and the morphology of cutting traces (such as width and depth) was investigated by constant-load scratch tests. The tip orientation had a significant influence on the coefficient of friction, which varied from 0.52-0.66 for Ni and from 0.46- 0.61 for Cu. The crisscross-pattern sample showed that the tip orientation strongly affects the surface quality of the machined are a during scratching. A selective deposition of Cu at the pit-like defect on a p-type Si(111) surface was also investigated. Preferential deposition of the Cu occurred at the surface defect sites of silicon wafers, indicating that those defect sites act as active sites for the deposition reaction. The shape of the Cu-deposited area was almost the same as that of the residual stress field.

Characterization and Application of DLC Films Produced by New Combined PVD-CVD Technique

  • Chekan, N.M.;Kim, S.W.;Akula, I.P.;Jhee, T.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.2
    • /
    • pp.75-82
    • /
    • 2010
  • A new advanced combined PVD/CVD technique of DLC film deposition has been developed. Deposition of a DLC film was carried out using a pulsed carbon arc discharge in vapor hydrocarbon atmosphere. The arc plasma enhancing CVD process promotes dramatic increase in the deposition rate and decrease of compressive stress as well as improvement of film thickness uniformity compared to that obtained with a single PVD pulsed arc process. The optical spectroscopy investigation reveals great increase in radiating components of $C_2$ Swan system molecular bands due to acetylene molecules decomposition. AFM, Raman spectroscopy, XPS and nano-indentation were used to characterize DLC films. The method ensures obtaining a new superhard DLC nano-material for deposition of protective coatings onto various industrial products including those used in medicine.

Non-Destructive Detection of Hertzian Contact Damage in Ceramics

  • Ahn, H.S.;Jahanmir, S.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.114-121
    • /
    • 1995
  • An ultrasonic technique using normal-incident compressional waves was used to evaluate the surface and subsurface damage in ceramics produced by Hertzian indentation. Damage was produced by a blunt indenter (tungsten carbide ball) in glass-ceramic, green glass and silicon nitride. The damage was classified into two types; (1) Hertzian cone crack, in green glass and fine grain silicon nitride, and (2) distributed subsurface micro fractures, without surface damage, produced in glass ceramic. The ultrasonic technique was successful in detecting cone craks. The measurement results with the Hertzian cone cracks indicated that cracks perpendicular to the surface could be detected by the normal-incident compressional waws. Also shown is the capability of normal-incident compressional waves in detection distributed micro-sized cracks size of subsurface microfractures.

A Study on Utilizing Instrumented Indentation Technique for Evaluating In-field Integrity of Nuclear Structures (원전 구조물의 가동 중 건전성 평가를 위한 연속압입시험법의 활용에 관한 연구)

  • Song, Won-Seok;Kim, Seung-Gyu;Ahn, Hee-Jun;Kim, Kwang-Ho;Kwon, Dongil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.165-172
    • /
    • 2013
  • Power generating unit structures are designed and built to meet standard to secure its safety for expected life time. As the structures have been exposed to combined environment, degradation of structure material is accelerated and it can cause unexpected damage; evaluating precise mechanical properties of weak site like welded area is an essential research area as it is directly connected to safety issues. Existing measuring technique like tensile test requires specific size in testing specimen yet it is destructive method which is hard to apply on running structures. To overcome above mentioned limitation, IIT is getting limelight as it is non-destructive and simple method. In this study, latest technique is introduced to evaluate tensile property and residual stress by analyzing stress field occurs under the indenter while IIT is performed. Test on welded area, the weak site of nuclear structures have been practiced and confirmed that IIT can be usefully applied to evaluate integrity in industry.

Piezoelectric property of PZT ceramics by DC field and corona discharge poling (직류전계 및 corona방전에 따른 PZT 세라믹스의 분극과 압전특성)

  • Park, In-Cheol;Im, Jin-Ho;Lee, Jun-Hyeong;Jo, Sang-Hui
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.178-183
    • /
    • 1995
  • Piezoelectric properties of sintered specimen having a tetragonal phase of $Pb_{0.9888}Sr_{0.012}(Zr_{0.52}Ti_{0.48})O_{3}$ were comparatively studied with two different poling methodes, i.e., DC field and corona discharge technique. Internal stress of poled specimens by indentation fracture toughness was analyzed to evaluate degradation phenomenon. As the results, it was confirmed that corona discharge poling technique is practicable and has merits such as low-temperature poling, slow degradation and no electric breakdown comparing to DC field poling. However, corona discharge technique showed lower Kp value than DC field poling.

  • PDF

Quantitative Analysis of 3-D Displacements Measurement by Using Holospeckle Interferometry (홀로스펙클 간섭법을 이용한 3차원 변위측정의 정량적 연구)

  • 주진원;권영하;박승옥
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1208-1217
    • /
    • 1993
  • The simple and effective optical technique synthesizing holographic interferometry and speckle photography is presented. The optical system used in this experiment is based on image holography. A cantilever beam located on the precision translator is used to evaluate this measurement system. Experimental results agree well with the actual displacements within the error of 2.8%. As an its application, three dimensional contact deformation in the ball indentation is measured by using this optical system and compared with the numerical analysis by finite element method.

Direct Strength Evaluation of the CVD SiC Coating of TRISO Coated Fuel Particle with Micro Hemi Spherical Shell Configuration (마이크로 반구 쉘 형상의 화학증착 탄화규소 TRISO 코팅층의 파괴강도 직접평가)

  • Lee, Hyeon-Keun;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.368-374
    • /
    • 2007
  • CVD-SiC coating has been introduced as a protective layer in TRISO nuclear fuel particle of high temperature gas cooled reactor (HTGR) due to its excellent mechanical stability at high temperature. In order to prevent the failure of the TRISO particles, it is important to evaluate the fracture strength of the SiC coating layer. It is needed to develop a new simple characterization technique to evaluate the mechanical properties of the coating layer as a pre-irradiation step. In present work, direct strength measurement method with the specimen of hem i-spherical shell configuration was suggested. The indentation experiment on a hemisphere shell with a plate indenter was conducted. The fracture strength of the coating layer is related with the critical load for radial cracking of the shell. The finite element analysis was used to drive the semi-empirical equation for the strength measurement. The SiC hemispherical shells were successfully recovered from the section-grinding of TRISO coated particle and successive heat treatment in air. The strength of CVD-SiC coating layer was evaluated from the experimentally measured critical load during the indentation on SiC hemisphere shell. Weibull diagram of fracture strength was also constructed. This study suggested a new strength equation and experimental method to measure the fracture strength of CVD-SiC coating of TRISO coated fuel particles.

Study of the Damage Property of a Contacted Indent by Finite Element Method (유한요소해석에 의한 압입 접촉손상 특성 연구)

  • Cho, Jae-Ung;Kim, Choon-Sik;Lee, Hee-Sung;Kim, Young-Choon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5974-5979
    • /
    • 2014
  • Lightweight parts with very uniform precision are manufactured by an indent method and the press technique has been improved. Upon assembly with an indent method, a deformation force due to the compressive force occurs between the pin and hole and the contact surface is affected by damage. Therefore, a 3 dimensional model was made using the CATIA program and the damage on the surface contacted with indent was estimated through the ANSYS program in this study. In the analysis result, the maximum load applied at the PCB plate was 21.3 N when the pin goes through the PCB plate. When PCB plate came out of the pin, the maximum load was 19.24 N. As the structural analysis result, the maximum equivalent stress of Pin 1 was 192.96MPa because the maximum stress occurs at Pin 1 among all parts of this study model. By examining the damage property of the contacted indent and applying this study result to the design of real indentation, the damage can be prevented and the durability can be estimated.

A Study on Crystalline Structural Variations of the Rigid Spherical-Tip scratch on the Surface of α-Titanium substrates via Molecular Dynamics Simulations (α-티타늄 평판표면에서 강체 구형팁의 스크래치로 인한 내부 결정구조 특성 변화에 대한 연구)

  • Yeri Jung;Jin Ho Kim;Taeil Yi
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.167-172
    • /
    • 2023
  • Titanium alloys are widely recognized among engineering materials owing to their impressive mechanical properties, including high strength-to-weight ratios, fracture toughness, resistance to fatigue, and corrosion resistance. Consequently, applications involving titanium alloys are more susceptible to damage from unforeseen events, such as scratches. Nevertheless, the impact of microscopic damage remains an area that requires further investigation. This study delves into the microscopic wear behavior of α-titanium crystal structures when subjected to linear scratch-induced damage conditions, utilizing molecular dynamics simulations as the primary methodology. The configuration of crystal lattice structures plays a crucial role in influencing material properties such as slip, which pertains to the movement of dislocations within the crystal structure. The molecular dynamics technique surpasses the constraints of observing microscopic phenomena over brief intervals, such as sub-nano- or pico-second intervals. First, we demonstrate the localized transformation of lattice structures at the end of initialization, indentation, and wear processes. In addition, we obtain the exerted force on a rigid sphere during scratching under linear movement. Furthermore, we investigate the effect of the relaxation period between indentation and scratch deformation. Finally, we conduct a comparison study of nanoindentation between crystal and amorphous Ti substrates. Thus, this study reveals the underlying physics of the microscopic transformation of the α-titanium crystal structure under wear-like accidental events.

Evaluation of Young's Modulus of a Cantilever Beam by TA-ESPI (TA-ESPI에 의한 외팔보의 탄성계수 측정)

  • Lee H.S.;Kim K.S.;Kang K.S.;Jung H.C.;Yang S.P.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1115-1119
    • /
    • 2005
  • The paper proposes the elastic modulus evaluation technique of a cantilever beam by vibration analysis based on time-average electronic speckle pattern interferometry (TA-ESPI) with non-contact and nondestructive and Euler-Bernoulli equation. General approaches for the measurement of elastic modulus of thin film are Nano indentation test, Bulge test and Micro-tensile test and so on. They each have strength and weakness in the preparation of test specimen and the analysis of experimental result. ESPI has been developed as a common measurement method for vibration mode visualization and surface displacement. Whole-field vibration mode shape (surface displacement distribution) at a resonance frequency can be visualized by ESPI. And the maximum surface displacement distribution from ESPI is a clue to find the resonance frequency at each vibration mode shape. And the elastic modules of test material can be easily estimated from the measured resonance frequency and Euler-Bernoulli equation. The TA-ESPI vibration analysis technique is able to give the elastic modulus of materials through the simple processing of preparation and analysis.

  • PDF