• 제목/요약/키워드: Indentation Load-Depth Curve

검색결과 43건 처리시간 0.029초

유한요소해에 기초한 원뿔형 압입 물성평가법 (A Conical Indentation Technique Based on FEA Solutions for Property Evaluation)

  • 현홍철;김민수;이진행;이형일
    • 대한기계학회논문집A
    • /
    • 제33권9호
    • /
    • pp.859-869
    • /
    • 2009
  • 물성치와 하중-변위곡선을 일대일 대응 시킬 수 있는 함수를 생성함으로써, 미지 재료에 대한 압입시험 데이터로부터 바로 재료물성을 찾는 압입물성평가 기법을 제시했다. 원뿔형 압입 유한요소해석으로 압입자 중심각이 압입 하중-변위 곡선에 주는 영향을 살펴 보았다. 이로부터 한 압입자 중심각에 대해 같은 Kick's law 계수 C를 갖는 두 재료들이 압입자 중심각이 변하면 서로 다른 C 값들을 가짐을 확인했다. 이어 영률, 항복강도, 변형경화지수와 하중-변위곡선 사이의 상관관계들을 분석하고, 항복변형률이 변형경화 지수와 더불어 중요한 변수임을 확인했다. 이 두 특성들을 바탕으로 이중원뿔형 압입 물성평가 수식들을 작성했다. 1회 압입 후 재료의 영률을 평가하고, 두 압입자를 이용해 얻은 하중-변위 곡선들로부터 곡률계수들을 구해 항복변형률과 변형경화 지수를 구했다. 제시된 물성평가법은 압입 하중-변위곡선들로부터, 압입자 물성과 선단반경에 상관없이, 평균오차 2% 내에서 재료 물성값들을 준다.

압입시험 모델링을 통한 진응력-진변형율 관계 해석 (Analysis of True Stress - True Strain Relations through the Modeling of Ball Indentation Test)

  • 이호진;김기백;이봉상;이병섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.660-665
    • /
    • 2003
  • The true stress - true strain relation of SA508 steel was evaluated with analytical and experimental equation on the base of the indentation load-depth curve obtained from the modeling of ball indentation test. The evaluated relation between true stress and true strain is agreed well with that of SA508 teel defined in the modeling. The distribution of effective stress along the center axis of indentation depth was calculated with Tresca criteria in the modeling. The representative strain, which are defined in this study as the corresponding strains obtained from the maximum effective stress, have a linear relation with the true strain. The true stress - true strain relation of austenitic stainless steel was evaluated by the modeling of ball indentation test to verify the case of A508 steel.

  • PDF

NONDESTRUCTIVE/IN-FIELD CHARACTERIZATION OF TENSILE PROPERTIES AND RESIDUAL STRESS OF WELDED STRUCTURES USING ADVANCED INDENTATION TECHNIQUE

  • Park, Yeol;Dongil Son;Kim, Kwang-Ho;Park, S. Joon;Jang, Jae-il;Dongil Kwon
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.668-674
    • /
    • 2002
  • Structural integrity assessment is indispensable for preventing catastrophic failure of industrial structures/components/facilities. This diagnosis of operating components should be done periodically for safe maintenance and economical repair. However, conventional standard methods for mechanical properties have the problems of bulky specimen, destructive and complex procedure of specimen sampling. Especially, the mechanical properties at welded zone including weldment and heat affected zone could not be evaluated individually due to their size requirement problem. So, an advanced indentation technique has been developed as a potential method for non-destructive testing of in-field structures. This technique measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation such as yield strength, tensile strength and work-hardening index. Also indentation technique can evaluate a residual stress based on the concept that indentation load-depth curves were shifted with the direction and the magnitude of residual stress applied to materials. In this study, we characterized the tensile properties and welding residual stress of various industrial facilities through the new techniques, and the results are introduced and discussed.

  • PDF

비파괴 계장화 압입시험기법을 통한 API X65 배관 용접부 잔류응력 평가 (Evaluation of Residual Stress on Welded Joint in API X65 Pipe Line through Nondestructive Instrumented Indentation Technique)

  • 지원재;이윤희;김우식;김철만;권동일
    • Journal of Welding and Joining
    • /
    • 제21권5호
    • /
    • pp.547-554
    • /
    • 2003
  • Apparent mechanical properties in structural components can be different from the initially designed values due to the formation of the residual stress in metal forming and welding. Therefore, the evaluation of residual stress has great importance in the reliability diagnosis of structural components. A nondestructive instrumented indentation technique has been proposed to evaluate various strength concerning mechanical properties from the analysis of load-depth curve. In this study, quantitative residual stress estimation on API X65 welded joints for natural gas pipeline was performed by analyzing the variation of indentation loading curve by residual stress through a new proposed theoretical model. The residual stress from the indentation method was compared with that from the saw-cutting method.

연속압입시험기법을 이용한 용접부 잔류응력 평가 (Evaluation of Residual Stress for Weldments Using Continuous Indentation Technique)

  • 이윤희;최열;김광호;권동일;이정석
    • 소성∙가공
    • /
    • 제14권6호
    • /
    • pp.541-546
    • /
    • 2005
  • Apparent mechanical properties in structural components can be different from the initially designed values due to the formation of the residual stress in metal forming and welding. Therefore, the evaluation of residual stress has great importance in the reliability diagnosis of structural components. A nondestructive continuous indentation technique has been proposed to evaluate various strength concerning mechanical properties from the analysis of load-depth curve. In this study, quantitative residual stress estimation on API X65 welded joints for natural gas pipeline was performed by analyzing the variation of indentation loading curve by residual stress through a new proposed theoretical model. The residual stress from the indentation method was compared with that from the saw-cutting method.

연속압입시험기법을 이용한 용접부 잔류응력 평가 (Evaluation of residual stress for weldments using continuous indentation technique)

  • 이정석;최열;김광호;권동일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.126-129
    • /
    • 2005
  • Apparent mechanical properties in structural components can be different from the initially designed values due to the formation of the residual stress in metal forming and welding. Therefore, the evaluation of residual stress has great importance in the reliability diagnosis of structural components. A nondestructive continuous indentation technique has been proposed to evaluate various strength concerning mechanical properties from the analysis of load-depth curve. In this study, quantitative residual stress estimation on API X65 welded joints for natural gas pipeline was performed by analyzing the variation of indentation loading curve by residual stress through a new proposed theoretical model. The residual stress from the indentation method was compared with that from the saw-cutting method.

  • PDF

Advanced Indentation System을 이용한 천연가스배관 용접열영향부의 응력-변형률 변화 특성 분석 (Evaluation of Stress-Strain Characteristics of Weldment in Natural Gas Pipeline Using Advanced Indentation System)

  • 장재일;손동일;권동일;김우식;박주승
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.483-488
    • /
    • 2001
  • Until now, the tensile properties of materials can be obtained just in accordance with conventional tensile testing methods which are described in several standards such as ASTM (American Society for Testing and Materials) standard and BS (British Standard). For some cases including on-service facility materials, however, the standard testing methods cannot be applicable due to the destructive testing procedure and specimen size requirement. Therefore, simple, non-destructive and advanced indentation technique was proposed. This test measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation and fracture. In this paper, the research trend of non-destructive evaluation of tensile properties using AIS (advanced indentation system) and its application fields are reviewed and discussed.

  • PDF

계장화압입시험법을 이용한 비압흔관찰 브리넬 경도 평가 (Determination of Brinell Hardness through Instrumented Indentation Test without Observation of Residual Indent)

  • 김성훈;최열;권동일
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.578-585
    • /
    • 2004
  • Hardness test is performed for determination of the other properties, such as strength, wear resistance and deformation resistance, as well as hardness itself. And it is performed for prediction of residual lifetime by analysis of hardness reduction or hardness ratio. However, hardness test has limitation that observation of residual indent is needed for determination of hardness value, and that is the reason for not to be widely used in industrial field. Therefore, in this study, we performed researches to obtain Brinell hardness value from quantitative numerical formula by analysing relationship between indentation depths from indentation load-depth curve and mechanical properties such as work hardening exponent, yield strength and elastic modulus.

Cr-Mo 강의 열화도 평가를 위한 Advanced Indentation System의 응용 (Application of Advanced Indentation System for Evaluati Tensile Property Degradation of Cr-Mo Steel)

  • 장재일;최열;이윤희;권동일;김정태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.231-236
    • /
    • 2001
  • A newly developed Advanced Indentation System (AIS), which is a portable and nondestructive system for evaluating tensile properties, was used to measure mechanical behavior of materials used under high temperature and pressure conditions. This test measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation and fracture. Aging effects of Cr-Mo and Cr-Mo-V steel at high temperature were simulated. Tensile properties including yield strength and tensile strength at various temperature are obtained from the test. For all test materials and conditions, the AIS-derived results were in good agreement with those from conventional standard test method. Examples of the test results ate given and potential applications of the AIS to assess the integrity of aging structures are briefly discussed.

  • PDF

비파괴적 연속압입시험 기법을 응용한 구조용 강의 소성 물성 평가 (Evaluation of Flow Properties of Steel Using Advanced Indentation System)

  • 장재일;손동일;최열;박순찬;권동일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.191-194
    • /
    • 2002
  • The tensile properties of materials can be obtained just in accordance with conventional tensile testing methods which are described in several standards. However, the standard testing methods cannot be applicable due to the destructive testing procedure and specimen size requirement for some cases including on-service facility materials. Therefore, simple, non-destructive and advanced indentation technique was proposed. This test measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation and fracture. In this paper, the research trend of non-destructive evaluation of tensile properties using advanced indentation system and its application fields are reviewed and discussed.

  • PDF