• Title/Summary/Keyword: Incremental action

Search Result 27, Processing Time 0.025 seconds

The Building of Incremental Interpreter Using Analyzing of Dynamic Semantics (동적 의미 분석에 의한 점진 해석기 구축)

  • Han Junglan;Choi Sung
    • Journal of Internet Computing and Services
    • /
    • v.5 no.6
    • /
    • pp.111-120
    • /
    • 2004
  • In order to increase the productivity of software, the research to reduce the total cost in software development environments is working, Considerable time is wasted waiting for a changed program in program development, however smell the change, to be edited and compiled and executed. In case of partial change, we need incremental interpreter for reexecuting the changed parts and its affected parts, In this paper, we implement the incremental interpreter by using analyzing dynamic semantics at execution time, We define a new IMPLO(IMPerative Language with Object) language using EBNF(Extended Backus Naur Form) notation and then, design and implement the incremental interpreter of this language by using action equations to describe the dynamic semantics.

  • PDF

Building of Integrated Increment Interpretation System Based on Action Equations (작용 식 기반 통합 점진 해석 시스템 구축)

  • Han, Jung-Ran;Choi, Sung
    • The KIPS Transactions:PartA
    • /
    • v.11A no.3
    • /
    • pp.149-156
    • /
    • 2004
  • As software is large and sophisticate, in order to increase the productivity and efficiency of programs in programming development environments, it is necessary to support the integrated system that offers user interface integrated editing, compiling, debugging, and running steps. The key tool in such environments is an incremental translation. In this paper, in order to increase the productivity and reusability of software, the goal is to construct the integrated incremental interpretation system that supports friendly user interface with editor, debugger, and incremental interpreter. We define the new object-oriented language, IMPLO(IMPerative Language with Object) using EBNF notation, and construct the integrated incremental interpretation system using incremental interpreter of the language. To do so, we extend attribute grammars for specifying static semantics and present new action equations to describe the dynamic semantics. We executed the incremental interpretation by using analyzing the dynamic semantics and then implemented integrated incremental interpretation system with editor and debugger in C, Lex and Yacc using X windows on SUN. We obtain about 50% speedups in case of incremental execution time for example programs.

Fault-tolerant control system for once-through steam generator based on reinforcement learning algorithm

  • Li, Cheng;Yu, Ren;Yu, Wenmin;Wang, Tianshu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3283-3292
    • /
    • 2022
  • Based on the Deep Q-Network(DQN) algorithm of reinforcement learning, an active fault-tolerance method with incremental action is proposed for the control system with sensor faults of the once-through steam generator(OTSG). In this paper, we first establish the OTSG model as the interaction environment for the agent of reinforcement learning. The reinforcement learning agent chooses an action according to the system state obtained by the pressure sensor, the incremental action can gradually approach the optimal strategy for the current fault, and then the agent updates the network by different rewards obtained in the interaction process. In this way, we can transform the active fault tolerant control process of the OTSG to the reinforcement learning agent's decision-making process. The comparison experiments compared with the traditional reinforcement learning algorithm(RL) with fixed strategies show that the active fault-tolerant controller designed in this paper can accurately and rapidly control under sensor faults so that the pressure of the OTSG can be stabilized near the set-point value, and the OTSG can run normally and stably.

Incremental Interpreter based on Action Equations (작용 식 기반 점진 해석기)

  • Han, Jeong-Ran;Lee, Gi-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.8
    • /
    • pp.1018-1027
    • /
    • 1999
  • 속성 문법은 언어의 정적인 의미구조를 표현하는 형식적인 표기법으로 동적인 의미구조를 표현하기는 부적절하다. 동적 의미구조를 잘 명세하고 명세된 언어를 구현하기 위해서 기존의 속성 문법을 확장하여 언어 구현에 필요한 동적인 작용들(actions)을 잘 표현해야 한다. 본 논문에서는 속성 문법을 확장하여 정적이고 동적인 의미구조를 잘 표현할 수 있는 새로운 작용 식(action equation)을 제시한다. 제시된 작용 식(action equation)의 동적인 의미 구조로 부터 SIMP 언어의 점진 해석기(incremental interpreter)를 설계하고 구현한다. 점진 해석기는 언어 기반의 프로그래밍 환경에서 수정된 부분만을 번역하여 프로그램의 전체 실행 결과를 얻는 해석기를 의미한다. 본 해석기는 SUN 1000에서 Lex와 Yacc을 사용해서 C 언어로 설계하고 구현하였다. 예제 프로그램을 실행시켰을 때 배정 문이나 IF문의 경우는 매우 효율적이었고 Loop의 경우는 재실행될 필요가 있는 영향받는 명령문들이 적을수록 점진 해석이 더 효율적으로 수행된다.Abstract Attribute grammars are a formal notation which expresses the static semantics of programming languages, but they are not suitable for expressing dynamic semantics. To describe dynamic semantics and implement a specified language, we extend attribute grammars and present new action equations which describe static and dynamic semantics. The incremental interpreter of a SIMP language is designed and implemented from the dynamic semantics of presented action equations. The incremental interpreter is to translate only modified part in the language-based programming environments and have results of whole program.Our interpreter is implemented in C with Lex and Yacc on SUN 1000. When we execute example programs, the incremental evaluation of any assignment and IF statements executes efficiently. But in the case of loop, we execute efficiently when the effected statements to be reexecuted in the loop are of small number.

Collapse failure mechanism of subway station under mainshock-aftershocks in the soft area

  • Zhen-Dong Cui;Wen-Xiang Yan;Su-Yang Wang
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.303-316
    • /
    • 2024
  • Seismic records are composed of mainshock and a series of aftershocks which often result in the incremental damage to underground structures and bring great challenges to the rescue of post-disaster and the repair of post-earthquake. In this paper, the repetition method was used to construct the mainshock-aftershocks sequence which was used as the input ground motion for the analysis of dynamic time history. Based on the Daikai station, the two-dimensional finite element model of soil-station was established to explore the failure process of station under different seismic precautionary intensities, and the concept of incremental damage of station was introduced to quantitatively analyze the damage condition of structure under the action of mainshock and two aftershocks. An arc rubber bearing was proposed for the shock absorption. With the arc rubber bearing, the mode of the traditional column end connection was changed from "fixed connection" to "hinged joint", and the ductility of the structure was significantly improved. The results show that the damage condition of the subway station is closely related to the magnitude of the mainshock. When the magnitude of the mainshock is low, the incremental damage to the structure caused by the subsequent aftershocks is little. When the magnitude of the mainshock is high, the subsequent aftershocks will cause serious incremental damage to the structure, and may even lead to the collapse of the station. The arc rubber bearing can reduce the damage to the station. The results can offer a reference for the seismic design of subway stations under the action of mainshock-aftershocks.

Displacement tracking of pre-deformed smart structures

  • Irschik, Hans;Krommer, Michael;Zehetner, Christian
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.139-154
    • /
    • 2016
  • This paper is concerned with the dynamics of hyperelastic solids and structures. We seek for a smart control actuation that produces a desired (prescribed) displacement field in the presence of transient imposed forces. In the literature, this problem is denoted as displacement tracking, or also as shape morphing problem. One talks about shape control, when the displacements to be tracked do vanish. In the present paper, it is assumed that the control actuation is provided by imposed eigenstrains, e.g., by the electric field in piezoelectric actuators, or by thermal actuators, or via analogous physical effects, such as magneto-striction or pre-stress. Structures with a controlled eigenstrain-type actuation belong to the class of smart structures. The action of the eigenstrains can be conveniently characterized by actuation stresses. Our theoretical derivations are performed in the framework of the theory of small incremental dynamic deformations superimposed upon a statically pre-deformed configuration of a hyperelastic solid or structure. We particularly ask for a distribution of incremental actuation stresses, such that the incremental displacements follow exactly a prescribed trajectory field, despite the imposed incremental forces are present. An exact solution of this problem is presented under the assumption that the actuation stresses can be tailored freely and applied everywhere within the body. Extending a Neumann-type solution strategy, it is shown that the actuation stresses due to the distributed control eigenstrains must satisfy certain quasi-static equilibrium conditions, where auxiliary body-forces and auxiliary surface tractions are to be taken into account. The latter auxiliary loading can be directly computed from the imposed forces and from the desired displacement field to be tracked. Hence, despite the problem is a dynamic one, a straightforward computation of proper actuator distributions can be obtained in the framework of quasi-static equilibrium conditions. Necessary conditions for the functioning of this concept are presented. Particularly, it must be required that the intermediate configuration is infinitesimally superstable. Previous results of our group for the case of shape control and displacement tracking in linear elastic structures are included as special cases. The high potential of the solution is demonstrated via Finite Element computations for an irregularly shaped four-corner plate in a state of plain strain.

Fragility assessment of shear walls coupled with buckling restrained braces subjected to near-field earthquakes

  • Beiraghi, Hamid
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.389-402
    • /
    • 2019
  • Reinforced concrete walls and buckling restrained braces are effective structural elements that are used to resist seismic loads. In this paper, the behavior of the reinforced concrete walls coupled with buckling restrained braces is investigated. In such a system, there is not any conventional reinforced concrete coupling beam. The coupling action is provided only by buckling restrained braces that dissipate energy and also cause coupling forces in the wall piers. The studied structures are 10-, 20- and 30-story ones designed according to the ASCE, ACI-318 and AISC codes. Wall nonlinear model is then prepared using the fiber elements in PERFORM-3D software. The responses of the systems subjected to the forward directivity near-fault (NF) and ordinary far-fault (FF) ground motions at maximum considered earthquake (MCE) level are studied. The seismic responses of the structures corresponding to the inter-story drift demand, curvature ductility of wall piers, and coupling ratio of the walls are compared. On average, the results show that the inter-story drift ratio for the examined systems subjected to the far-fault events at MCE level is less than allowable value of 3%. Besides, incremental dynamic analysis is used to examine the considered systems. Results of studied systems show that, the taller the structures, the higher the probability of their collapse. Also, for a certain peak ground acceleration of 1 g, the probability of collapse under NF records is more than twice this probability under FF records.

Affordance in Consideration of a Feature of Platform Action Game (플랫폼 액션 게임의 특징을 고려한 어포던스)

  • Song, Seung-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.12
    • /
    • pp.62-69
    • /
    • 2013
  • A great many researches on affordance in HCI(Human Computer Interaction), product design, and cognitive science has been done investigated currently. In addition, the concept of affordances has been applied to games in the incremental trying to understand the relationship between gamers and systems. However, there are some problems to apply them to games because many researchers take ease to use, consistency, and usefulness to handle mainly in HCI rather than the property of the game into account. Consequently, the objective of the study is to investigate affordances in consideration of the features of the game, such as fantasy, variety, and fun based on the concept of them suggested in ecological psychology. A protocol analysis was conducted through the think-aloud method on the full gameplay session to platform action game as the basic genre of many game. The result of this research reveals that a static and movable affordances as a fixed state are discovered and transforming continously, appearing, and disappearing affordances as variable states are uncovered, and physical and cognitive affordances are observed. The result of this research is expected to propose the essential design guideline on the methodology of game design.

Inelastic Analysis of Space Steel Frames Considering Spread of Plasticity (소성영역 진전효과를 고려한 공간 뼈대구조의 비탄성 해석)

  • 한재영;김성보
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.45-52
    • /
    • 2003
  • A finite element procedure to estimate ultimate strength of space frames considering spread of plasticity is presented. The improved displacement field is introduced based on inclusion of second order terms of finite rotations. All the nonlinear terms due to bending and torsional moment as well as axial force are precisely considered. The concept of plastic hinge is introduced and the incremental load/displacement method is applied for the elasto-plastic analysis. The initial yield surface is defined based on the residual stress and the full plastification surface is considered under the combined action of axial force, bending and torsional moments. The elasto-plastic stiffness matrices are derived using the flow rule and the normality condition of the limit function. Finite element solutions for ultimate strength of space frames are compared with available solutions and experimental results.

  • PDF

Optimal shape design of contact systems

  • Mahmoud, F.F.;El-Shafei, A.G.;Al-Saeed, M.M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.155-180
    • /
    • 2006
  • Many applications in mechanical design involve elastic bodies coming into contact under the action of the applied load. The distribution of the contact pressure throughout the contact interface plays an important role in the performance of the contact system. In many applications, it is desirable to minimize the maximum contact pressure or to have an approximately uniform contact pressure distribution. Such requirements can be attained through a proper design of the initial surfaces of the contacting bodies. This problem involves a combination of two disciplines, contact mechanics and shape optimization. Therefore, the objective of the present paper is to develop an integrated procedure capable of evaluating the optimal shape of contacting bodies. The adaptive incremental convex programming method is adopted to solve the contact problem, while the augmented Lagrange multiplier method is used to control the shape optimization procedure. Further, to accommodate the manufacturing requirements, surface parameterization is considered. The proposed procedure is applied to a couple of problems, with different geometry and boundary conditions, to demonstrate the efficiency and versatility of the proposed procedure.