• Title/Summary/Keyword: Incremental Forming Process

Search Result 92, Processing Time 0.03 seconds

Prototype Manufacturing of a Brake Dust Shield by Dieless CNC Forming Technology (다이레스 포밍을 이용한 브레이크 더스트 쉴드 시작품 제작)

  • Kang, Jae-Gwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.4
    • /
    • pp.36-43
    • /
    • 2007
  • Dieless CNC forming is an innovative technology which can form various materials with complex shape by numerically controlled incremental forming process. In order to apply the technology to industrial parts, however, many problems such as spring-back, rising of material, and trimming difficulty must be solved. In this paper a new dieless CNC forming method to improve forming quality is proposed, which consists of how to modify its original shape in CAD and how to generate its CNC tool path in CAM. The effectiveness of the proposed procedures is tested with a brake dust shield of a vehicle. The results shows that the method proposed enhances the forming quality up to 48% compared to traditional method.

  • PDF

Design of Roll-to-Roll Forming Process for Micro Pattern on the Thin Sheet Metal by Finite Element Analysis (유한요소해석을 이용한 마이크로 박판 미세 패턴 롤-롤 성형공정 설계)

  • Cha, S.H.;Shin, M.S.;Lee, H.J.;Kim, J.B.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.167-172
    • /
    • 2010
  • Roll-to-roll forming process is one of important metal processing technology because the process is simple and economical. These days, with these merits, roll-to-roll forming process is tried to be employed in manufacturing the circuit board, barrier ribs and solar cell plate. However, it is difficult to apply to the forming of micro scale or sub-micro scale pattern. In this study, the roll forming processing for the micro scale is designed and analyzed. The forming of micro pattern for small electric device such as LCD panel by incremental roll forming process is analyzed. Firstly, the optimum analysis conditions are found by several analyses. And then, formability is analyzed for various protrusion shapes at various forming temperatures. The formability is evaluated in terms of filling ratio and damage value. The filling ratio is defined from the tool geometry and critical damage is determined from the analysis of uniaxial tensile test. Finally, optimum forming conditions that guarantee the successful forming are found.

SPIF-A: on the development of a new concept of incremental forming machine

  • Alves de Sousa, R.J.;Ferreira, J.A.F.;Sa de Farias, J.B.;Torrao, J.N.D.;Afonso, D.G.;Martins, M.A.B.E.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.5
    • /
    • pp.645-660
    • /
    • 2014
  • This paper presents the design and project of an innovative concept for a Single Point Incremental Forming (SPIF) Machine. Nowadays, equipment currently available for conducting SPIF result mostly from the adaptation of conventional CNC machine tools that results in a limited range of applications in terms of materials and geometries. There is also a limited market supply of equipment dedicated to Incremental Sheet Forming (ISF), that are costly considering low batches, making it unattractive for industry. Other factors impairing a quicker spread of SPIF are large forming times and poor geometrical accuracy of parts. The following sections will depict the development of a new equipment, designed to overcome some of the limitations of machines currently used, allowing the development of a sounding basis for further studies on the particular features of this process. The equipment here described possesses six-degrees-of freedom for the tool, for the sake of improved flexibility in terms of achievable tool-paths and an extra stiffness provided by a parallel kinematics scheme. A brief state of the art about the existing SPIF machines is provided to support the project's guidelines.

Design of Cross Wedge Rolling Die for a Non-heat-treated Cold Steel using CAD and CAE (CAD/CAE를 이용한 냉간 비조질강용 회전전조 금형설계)

  • Lee H. W.;Yoon D. J.;Lee G. A.;Choi S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.400-403
    • /
    • 2004
  • A non-heat기leafed steel does not need quenching and tempering processes that are called a heat treatment differently from conventional steel. Since the tensile strength of this steel is higher than 900MPa, a conventional forming process should be changed to incremental forming process such as a cross wedge rolling that requires lower load capacity than conventional ones. In this paper, the cold cross wedge rolling (CWR) die has been designed using CAD/CAE In order to produce near-net-shaped component of ball stud of non-heat-treated cold steel. Finite element analyses were applied in order to investigate process parameters of CWR. Results provide that the stretching angle and the forming angie at knifing zone in CWR process is important parameter to be the stable process under the low friction coefficient condition.

  • PDF

Design of Forming Path for Concave Steel Plate Using the Line Array Roll Set (선형 배열 롤 셋을 이용한 오목형상 강판 성형경로 설계)

  • Roh, H.J.;Kim, K.H.;Shim, D.S.;Yang, D.Y.;Chung, S.W.;Han, M.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.491-495
    • /
    • 2008
  • Incremental forming path to manufacture a thick concave steel plate using the line array roll set is designed. To find the optimum forming path, the forming processes are simulated by the finite element method. A general-purpose commercial software, MSC MARC is used. A modeling with 8-node hexahedral elastic-plastic solid is performed to predict accurate springback and the analysis process was composed of 18 passes. The proposed forming paths are verified through experiments carried out in the prototype line array roll set. It is found that the process can be successfully applied to the fabrication of the dual curvature ship hull plate.

Steel processing effects on crash performance of vehicle safety related applications

  • Doruk, Emre
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.351-358
    • /
    • 2017
  • Due to the increasing competition, automotive manufacturers have to manufacture highly safe and light vehicles. The parts which make up the body of the vehicle and absorb the energy in case of a crash, are usually manufactured with sheet metal forming methods such as deep drawing, bending, trimming and spinning. The part may get thinner, thicker, folded, teared, wrinkled and spring back based on the manufacturing conditions during manufacturing and the type of application methods. Transferring these effects which originate from the forming process to the crash simulations that are performed for vehicle safety simulations, makes accurate and reliable results possible. As a part of this study, firstly, the one-step and incremental sheet metal forming analysis (deep drawing + trimming + spring back) of vehicle front bumper beam and crash boxes were conducted. Then, crash performances for cases with and without the effects of sheet metal forming were assessed in the crash analysis of vehicle front bumper beam and crash box. It was detected that the parts absorbed 12.89% more energy in total in cases where the effect of the forming process was included. It was revealed that forming history has a significant effect on the crash performance of the vehicle parts.

A Study on Forming Characteristics in Plate Type Cross Rolling Process (평판형 전조압연의 성형특성 연구)

  • Yoon D. J.;Lee G. A.;Lee N. K.;Choi S.;Lee H. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.329-332
    • /
    • 2005
  • Cross rolling process is one of incremental forming processes to form an axi-symmetric shaped metal component. It can be classified into two types according to the shape of dies, which are a drum type (roll type) and a plate type (straight type). It can also be classified into a wedge type and a ramp type processes according to deformation characteristics of a material. The ramp type die is applied to plate type cross rolling process in cold forming process for forming of teeth of gear or bolt, while the wedge type die is generally utilized to drum type and plate type cross rolling processes in hot forming process. A shape of the ramp type die is usually same as final shape of a product at every section of a progressing direction, while the shape of the wedge type die has different shapes in a progressing direction. In this paper, a rolling of neck part in a ball stud component has been carried out using the plate type cross rolling process with a ramp shaped die. Forming characteristics have been performed using finite element analysis in order to obtain a proper preform for the ramp type plate cross rolling process.

  • PDF

Formability of Flow Turning Process (플로우 터닝 공정에서의 성형성 연구)

  • Choi S.;Kim S. S.;Na K. H.;Cha D. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.195-199
    • /
    • 2001
  • The flow turning process, an incremental forming process, is a cost-effective forming method for axi-symmetric intricate parts to net shape. However, the flow turning process shows a fairly complicated deformation, it is very difficult to obtain satisfactory results. Therefore extensive experimental and analytical research has not been carried out. In this study, an fundamental experiment was conducted to improve productivity with process parameters such as tool path, angle of roller holder($\alpha$), feed rate(v ) and comer radius of forming roller(Rr). These factors were selected as variables in the experiment because they were most likely expected to have an effect on spring back. The clearance was controlled in order to achieve the precision product which is comparable to deep drawing one. And also thickness and diameter distributions of a multistage cup obtained by flow turning process were observed and compared with those of a commercial product produced by conventional deep drawing.

  • PDF