• Title/Summary/Keyword: Incremental Forming

Search Result 121, Processing Time 0.03 seconds

Development of a New NC-Controlled Trial Manufacturing Process for Sheet Metal Forming (박판 형성을 위한 새로운 추치 제어식 시작 방법의 개발)

  • 조철훈;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.929-932
    • /
    • 1995
  • In the work, a new computerized incremental forming method having high flexibility has been developed. In the mothod, the ordinary tools are replaced by various small tools, and only the small local region of a sheet blank is incrementally by movement of these tools. Since a small tool moves over the arbitrary surface ofthe dies using a NC machine, it is possible to produce three-dimensional and non-symmetric parts directly from CAD data. Arbitrarily shaped dies are made by LOM(Laminated Object Manufacturing), which is one of the Rapid Prototyping Methods. A forming machine is designed and developed by introducing a computer to control the movement of the tools.

  • PDF

점진판재성형을 이용한 다이레스 CNC 포밍가공

  • Yoon, Se-Bong;Jin, YounGil;Choi, Dong-Woo;Kang, Jae-Kwan;Wang, Duk-Hyun;Joo, Ho
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.310-310
    • /
    • 2004
  • 다품종 소량생산, 단납기로 대표되는 제품 개발 환경에서 금형비와 공정을 단축하는 것은 매우 중요하다. 전통적인 프레스 제품의 개발시 금형(Die)을 제작하지 않고 Forming 제품을 직접 생산하는 방법을 점진판재성형공법(incremental sheet metal forming)이라 한다. 점진판재성형 공법은 금형을 사용하지 않고도 3차원 형상의 성형이 가능하므로 다품종 소량 생산시 금형 제작비용 및 시간을 획기적으로 단축할 수 있어 자동차, 항공, 가전 산업 등 그 파급효과가 매우 크다고 할 수 있다.(중략)

  • PDF

Optimization of Single Point Incremental Forming of Al5052-O Sheet (Al5052-O 판재의 최적 점진성형 연구)

  • Kim, Chan Il;Xiao, Xiao;Do, Van Cuong;Kim, Young Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.181-186
    • /
    • 2017
  • Single point incremental forming (SPIF) is a sheet-forming technique. It is a die-less sheet metal manufacturing process for rapid prototyping and small batch production. The Critical parameters in the forming process include tool diameter, step depth, feed rate, spindle speed, etc. In this study, these parameters and the die shape corresponding to the Varying Wall Angle Conical Frustum(VWACF) model were used for forming 0.8mm in thick Al5052-O sheets. The Taguchi method of Experiments of Design (DOE) and Grey relational optimization were used to determine the optimum parameters in SPIF. A response study was performed on formability, spring back, and thickness reduction. The research shows that the optimum combination of these parameters that yield best performance of SPIF is as follows: tool diameter, 6mm; spin speed, 60rpm; step depth, 0.3mm; and feed rate, 500mm/min.

Design of intermediate shape in line array roll set (LARS) process (선형 배열 롤 셋 공정에서의 중간 형상 설계)

  • Shim, D.S.;Yang, D.Y.;Chung, S.W.;Han, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.215-219
    • /
    • 2009
  • For the effective manufacture of doubly curved metal plates, a line array roll set (LARS) process is proposed. The suggested process utilizes a pair of upper and lower symmetric roll assemblies. In the process, the initial plate is progressed into the final shape in a stepwise or pathwise manner according to the basic principle of the incremental forming process. In this work, the intermediate shape which is closest to a final shape is proposed to fabricate the desired shape effectively in design of forming schedule. The intermediate shape has homogeneous curvature in a longitudinal and transverse direction so that it can be fabricated easily without complicated controls of rolls in the roll set. The method of approximation using genetic algorithm is proposed and applied to some actual ship hulls to evaluate the efficiency of the algorithm.

  • PDF

Evaluation of incremental sheet forming characteristics for 3D-structured aluminum sheet - part 2 (3D 구조 알루미늄 판재의 점진판재성형 특성 평가 (제2보))

  • Kim, Young-Suk;Do, Van-Cuong;Ahn, Dae-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1585-1593
    • /
    • 2015
  • 3D-structured (embossed) aluminum sheets have been used in the heat insulation purpose for automative exhaust parts because of increasing their surface areas and stiffness reinforcement imposed in making the embossing pattern. However, there are many restrictions in press forming of the embossed sheet compared with the flat sheet (non-embossed one) because of its difference in the mechanical properties and the geometrical 3-dimensional shape. In this paper we investigated the deformation characteristic of embossed aluminum sheet in the incremental sheet forming process which has frequently used in the design verification and the trial manufacturing of sheet products. The single point incremental forming (SPIF) experiments for the rectangular cone forming using the CNC machine with a chemical wood-machined die and a circular tool shape showed that the formability of the embossed sheet are better than that of the flat sheet in view of the maximum angle of cone forming. This comes from the fact that the embossed sheet between the tool and the elastic die wall is plastically compressed and the flatted area contributes to increase the plastic deformation. Also the tool path along the outward movement from the center showed a better formability than that of the inward movement from the edge. However the surface quality for the tool path along the outward movement evaluated from the surface deflection is inferior than that of the tool path along the inward movement.

A Study on the Application of Line Array Roll Set Process to Shipbuilding Industry (선형 배열 롤 셋 공정의 조선 산업 적용에 관한 연구)

  • Shim, D.S.;Yang, D.Y.;Chung, S.W.;Han, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.289-292
    • /
    • 2009
  • The line array roll set process, as one of many kinds of incremental forming processes, is a continuous process in which a flat metal plate is formed into a singly or doubly curved plate through successive passes of forming rolls. It was found that the curvature level of the formed plates in the previous study was well over the curvature required in shipyards. This fact shows that the LARS method has considerable potential for shipbuilding applications. In a shipbuilding yard, hull forming is an important fabrication process in which flat plates are deformed into singly or doubly curved plates. The major purpose of the present study is to estimate experimentally the general applicability of the line array roll set process for the manufacture of ship hull plates. In this study, the target shapes are selected through investigation of the shape classification of ship hull plates that comprise a certain vessel. Forming processes for twisted shapes are analyzed with the finite element method (FEM). Finally, the results of experimental work for two types of target shapes are presented.

  • PDF

Prototyping the Brake Shields of a Vehicle by Dieless CNC Forming Technology (다이레스 CNC 포밍을 이용한 자동차용 브레이크 더스트 쉴드 시작품 제작)

  • Lee H.J.;Kang S.H.;Yeom K.S.;Gang Byeong-Su;Wang D.H.;Kang J.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.529-530
    • /
    • 2006
  • Manufacturing industry is changing rapidly. Prototyping with rapid manufacturing is a part of every business in many companies and prototypes are used efficiently as a part of the production development process. Sheet metal forming has traditionally been a technology area where prototyping has been extremely expensive and efficient options for low volume have been limited. This paper describes the process for incremental sheet forming technologies to make the prototype for a brake dust shield of vehicles, which includes the remodeling method to make a base mold and tool path for sheet metal forming and 5-axes laser cutting machine to trim the prototype product.

  • PDF

Micro pattern forming on the metal thin foil Using micro dieless forming system (마이크로 다이레스 성형 시스템을 이용한 금속박판소재의 마이크로 패턴 성형)

  • Lee, H.J.;Lee, H.W.;Park, J.H.;Lee, N.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.379-382
    • /
    • 2007
  • The MEMS (Micro Electro Mechanical Systems) process is used in a micro/nano pattern manufacturing method. This method is based on the lithography technology. But the MEMS process has some problems such as complicated process, long processing time and high production costs. Many researchers are doing research in substitute manufacturing method to work out a solution to these problems. In this paper, we apply a dieless incremental forming technology to a substitute method of MEMS process. This dieless forming technology is using in the commercial scale sheet forming such as a prototype of automobile sheet parts. 5-axes CNC (Computerized Numeric Control) method are applied in this system to get a micro-scale dieless forming results. These 5-axes system are composed of precision AC servo motor stages (4-axes) and PZT actuator (1-axis). A PZT actuator is used in a precision actuating axis because it can be operated in the nano scale stroke resolution. This micro dieless incremental forming system has the advantage of minimization in manipulating distance and working space. As equipment and tools become smaller in size, minute inertia force and high natural frequency can be obtained. Therefore, high precision forming performance can be obtained. This allows the factory to quickly provide the customer with goods because the manufacturing system and process are reduced. To construct this micro manufacturing system, many technologies are necessary such as high stiffness frame, high precision actuating part, structural analysis, high precision tools and system control. To achieve the optimal forming quality, the micro dieless forming system is designed and made with high stiffness characteristic.

  • PDF