• Title/Summary/Keyword: Incremental Algorithm

Search Result 371, Processing Time 0.026 seconds

An Efficient Join Algorithm for Data Streams with Overlapping Window (중첩 윈도우를 가진 데이터 스트링을 위한 효율적인 조인 알고리즘)

  • Kim, Hyeon-Gyu;Kang, Woo-Lam;Kim, Myoung-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.5
    • /
    • pp.365-369
    • /
    • 2009
  • Overlapping windows are generally used for queries to process continuous data streams. Nevertheless, existing approaches discussed join algorithms only for basic types of windows such as tumbling windows and tuple-driven windows. In this paper, we propose an efficient join algorithm for overlapping windows, which are considered as a more general type of windows. The proposed algorithm is based on an incremental window join. It focuses on producing join results continuously when the memory overflow frequently occurs. It consists of (1) a method to use both of the incremental and full joins selectively, (2) a victim selection algorithm to minimize latency of join processing and (3) an idle time professing algorithm. We show through our experiments that the selective use of incremental and full joins provides better performance than using one of them only.

Data anomaly detection and Data fusion based on Incremental Principal Component Analysis in Fog Computing

  • Yu, Xue-Yong;Guo, Xin-Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.3989-4006
    • /
    • 2020
  • The intelligent agriculture monitoring is based on the perception and analysis of environmental data, which enables the monitoring of the production environment and the control of environmental regulation equipment. As the scale of the application continues to expand, a large amount of data will be generated from the perception layer and uploaded to the cloud service, which will bring challenges of insufficient bandwidth and processing capacity. A fog-based offline and real-time hybrid data analysis architecture was proposed in this paper, which combines offline and real-time analysis to enable real-time data processing on resource-constrained IoT devices. Furthermore, we propose a data process-ing algorithm based on the incremental principal component analysis, which can achieve data dimensionality reduction and update of principal components. We also introduce the concept of Squared Prediction Error (SPE) value and realize the abnormal detection of data through the combination of SPE value and data fusion algorithm. To ensure the accuracy and effectiveness of the algorithm, we design a regular-SPE hybrid model update strategy, which enables the principal component to be updated on demand when data anomalies are found. In addition, this strategy can significantly reduce resource consumption growth due to the data analysis architectures. Practical datasets-based simulations have confirmed that the proposed algorithm can perform data fusion and exception processing in real-time on resource-constrained devices; Our model update strategy can reduce the overall system resource consumption while ensuring the accuracy of the algorithm.

Search space pruning technique for optimization of decision diagrams (결정 다이어그램의 최적화를 위한 탐색공간 축소 기법)

  • Song, Moon-Bae;Dong, Gyun-Tak;Chang, Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.2113-2119
    • /
    • 1998
  • The optimization problem of BDDs plays an improtant role in the area of logic synthesis and formal verification. Since the variable ordering has great impacts on the size and form of BDD, finding a good variable order is very important problem. In this paper, a new variable ordering scheme called incremental optimization algorithm is presented. The proposed algorithm reduces search space more than a half of that of the conventional sifting algorithm, and computing time has been greatly reduced withoug depreciating the performance. Moreover, the incremental optimization algorithm is very simple than other variable reordering algorithms including the sifting algorithm. The proposed algorithm has been implemented and the efficiency has been show using may benchmark circuits.

  • PDF

A Study of MPPT algorithm for Low-insolation (저일사강도에서 MPPT를 동작시키기 위한 알고리즘 연구)

  • Kim, Ki-Hyun;Yu, Gwon-Jong;Jung, Young-Seok;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.473-475
    • /
    • 2001
  • This paper proposed a MPPT ( Maximum Power Point Tracking) control algorithm for PV(Photovoltaic) array based on a modified constant voltage control MPPT algorithm at low-insolation. This method which combines a IncCond(Incremental Conductance) and a constant voltage control algorithm. In contrast to the typical conventional MPPT algorithm, the proposed method have been obtained high efficiency and good performance. The proposed algorithm is verified through simulation result. In order to confirm the availability of the scheme, a simulation used PSIM and ACSL software tool.

  • PDF

An Improved Variable Step Size MPPT Algorithm Based on INC

  • Xu, Zhi-Rong;Yang, Ping;Zhou, Dong-Bao;Li, Peng;Lei, Jin-Yong;Chen, Yuan-Rui
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.487-496
    • /
    • 2015
  • In order to ensure that photovoltaic (PV) systems work at the maximum power point (MPP) and maximize the economic benefits, maximum power point tracking (MPPT) techniques are normally applied to these systems. One of the most widely applied MPPT methods is the incremental conductance (INC) method. However, the choice of the step size still remains controversial. This paper presents an improved variable step size INC MPPT algorithm that uses four different step sizes. This method has the advantages of INC but with the ability to validly adjust the step size to adapt to changes of the PV's power curve. The presented algorithm also simultaneously achieves increased rapidity and accuracy when compared with the conventional fixed step size INC MPPT algorithm. In addition, the theoretical derivation and specific applications of the proposed algorithm are presented here. This method is validated by simulation and experimental results.

Malware Containment Using Weight based on Incremental PageRank in Dynamic Social Networks

  • Kong, Jong-Hwan;Han, Myung-Mook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.421-433
    • /
    • 2015
  • Recently, there have been fast-growing social network services based on the Internet environment and web technology development, the prevalence of smartphones, etc. Social networks also allow the users to convey the information and news so that they have a great influence on the public opinion formed by social interaction among users as well as the spread of information. On the other hand, these social networks also serve as perfect environments for rampant malware. Malware is rapidly being spread because relationships are formed on trust among the users. In this paper, an effective patch strategy is proposed to deal with malicious worms based on social networks. A graph is formed to analyze the structure of a social network, and subgroups are formed in the graph for the distributed patch strategy. The weighted directions and activities between the nodes are taken into account to select reliable key nodes from the generated subgroups, and the Incremental PageRanking algorithm reflecting dynamic social network features (addition/deletion of users and links) is used for deriving the high influential key nodes. With the patch based on the derived key nodes, the proposed method can prevent worms from spreading over social networks.

Modeling of AA5052 Sheet Incremental Sheet Forming Process Using RSM-BPNN and Multi-optimization Using Genetic Algorithms (반응표면법-역전파신경망을 이용한 AA5052 판재 점진성형 공정변수 모델링 및 유전 알고리즘을 이용한 다목적 최적화)

  • Oh, S.H.;Xiao, X.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.125-133
    • /
    • 2021
  • In this study, response surface method (RSM), back propagation neural network (BPNN), and genetic algorithm (GA) were used for modeling and multi-objective optimization of the parameters of AA5052-H32 in incremental sheet forming (ISF). The goal of optimization is to determine the maximum forming angle and minimum surface roughness, while varying the production process parameters, such as tool diameter, tool spindle speed, step depth, and tool feed rate. A Box-Behnken experimental design (BBD) was used to develop an RSM model and BPNN model to model the variations in the forming angle and surface roughness based on variations in process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective optimization of the ISF process the GA. The results showed that RSM and BPNN can be effectively used to control the forming angle and surface roughness. The optimized Pareto front produced by the GA can be utilized as a rational design guide for practical applications of AA5052 in the ISF process

An Improved Incremental Conductance MPPT Method for the Photovoltaic Generation

  • Wellawatta, Thusitha;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.185-186
    • /
    • 2016
  • Maximum power point tracking (MPPT) techniques play a big role in improving the efficiency of photovoltaic (PV) system. Among various schemes, the incremental conductance (INC) method is mostly discussed in literature because of its fast response to the rapid irradiation changes and high tracking accuracy. However, the existing INC algorithm has trade-offs between fast dynamic response and steady state stability. This study proposes a novel INC method to meet high efficiency and fast tracking performance at the same time.

  • PDF

Generalized Minimum Variance Self-tuning Control of Offset Using Incremental Estimator (증분형 추정기를 사용한 오프세트의 일반화 최소분산형 자기동조제어)

  • 박정일;최계근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.4
    • /
    • pp.372-378
    • /
    • 1988
  • The elimination of offsets such as those induced by load disturbance is a principal requirement in the control of industrial processes. In this paper we propose a self-tuning minimum variance control in the two tuypes of k-incremental and integrating form. Since the objective of control design in this paper is a generalized minimum variance control, it can be applied to nonminimum phase system. And we compare the proposed algorithm wiht that of the positional self-tuning control and show that it can also be applied to nonminimum phase system by computer simulation.

  • PDF

A New Incremental Instance-Based Learning Algorithm (새로운 점진적 인스턴스 기반 학습기법)

  • Han, Jin-Chul;Yoon, Chung-Hwa
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.11a
    • /
    • pp.477-480
    • /
    • 2005
  • 메모리 기반 추론 기법에서 기억공간의 효율적 사용과 분류 시간을 줄이기 위한 다양한 방법들이 연구되고 있으며, NGE(Nested Generalized Exemplar) 이론을 예로 들 수 있다. 본 논문에서는 학습 패턴 집합으로부터 대표패턴을 생성하는 RPA(Recursive Partition Averaging) 기법과 점진적으로 대표패턴을 추출하는 IRPA(Incremental RPA) 기법을 제안한다.

  • PDF