• Title/Summary/Keyword: Inconel625

Search Result 43, Processing Time 0.026 seconds

Evaluation of the Corrosion Property on the Welded Zone of Cast Steel Piston Crown with Types of Electrode (용접재료 별 주강 피스톤 크라운 용접부위의 부식 특성에 대한 평가)

  • Moon, Kyung-Man;Kim, Yun-Hae;Lee, Myeong-Hoon;Baek, Tae-Sil;Kim, Jin-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.356-362
    • /
    • 2014
  • Wear and corrosion of the engine parts surrounded with combustion chamber is more serious compared to the other parts of the engine because temperature of the exhaust gas in a combustion chamber is getting higher and higher with increasing of using the heavy oil of low quality. Therefore, an optimum repair weldment as well as an available choice of the base metal for these parts are very important to prolong their lifetime in a economical point of view. It reported that there was an experimental result for repair weldment on the forged steel which would be generally used with piston crown material, however, it is considered that there is no study for the repair weldment on the cast steel of piston crown material. In this study, four types of electrodes such as 1.25Cr-0.5Mo, 0.5Mo Inconel 625 and 718 were welded with SMAW and GTAW methods on the cast steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected zone and base metal were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% $H_2SO_4$ solution. In the cases of Inconel 625, 718, the weld metals and base metals exhibited the best and worst corrosion resistance respectively, however, 1.25Cr-0.5Mo and 0.5Mo indicated that corrosion resistance of the base metal was better than the weld metal. And the weld metal welded with electrodes of Inconel 625 revealed the best corrosion resistance among the electrodes, and Inconel 718 followed the Inconel 625. Hardness relatively also indicated higher value in the weld metal compared to heat affected zone and base metal. In particular, Inconel 718 indicated the highest value of hardness compared to other electrodes in the heat affected zone.

Development of Inconel for Marine Structural Steel by FCAW Process (해양 구조용 인코넬강의 FCAW 용접의 최적기술 개발)

  • PARK KEYUNG-DONG;JIN YOUNG-BEOM;AN DO-KEYUNG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.234-238
    • /
    • 2004
  • Inconel 625 is useful in variety of industrial applications because of the resistance to attack in various corrosive media at temperatures from $200^{\circ}C$ to aver $1090^{\circ}C$, in combination with good law- and high temperature mechanical strength. Rencently, this material is also used widely in offshore processing piping in order to extend the maintenance term and improve the quality of anti-corrosion. In general, high quality weldments for this material are readily produced by commonly used processes. Not all processes are applicable to this material group, Ni-alloys. Metallurgical characterictics or the unavailability of matching, position or suitable welding processes. Nowadays, the flux cored wire is developed and applied for the better productivity in several welding position including the vertical position. in this study, the weldability and weldment characteristics (mechanical properties) of inconel 625 are considered in FCAW(Flux Core Arc Welding) associated with the several shielding gases($80\%Ar\;+\;20\%CO_2,\;50\%Ar+50CO_2,\;100CO_2$) in viewpoint of welding productivity.

  • PDF

Effect of heat input on the strength & micro-fissuring of alloy 59 weld (용접입열이 Alloy 59 용접부 강도와 미세균열에 미치는 영향)

  • Choe, Jun-Tae;Kim, Yeong-Il;Kim, Dae-Sun
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.165-167
    • /
    • 2005
  • Compared with Inconel 625 (ERNiCrMo-3) weld, Nb-free Alloy 59 (ERNiCrMo-13) weld with 15% Mo showed much higher resistance to hot cracking. Especially in the condition of current 350A and 30CPM of welding speed, no crack was detected at Inconel 625 fillet weld. Furthermore, it was found that the strength of Alloy 59 is sensitive to welding heat input. Up to around 14kJ/cm of heat input, Alloy 59 showed 678N/$mm^{2}$ of ultimate strength and 466N/$mm^{2}$ of yield strength. However, as heat input increased above 14kJ/cm, Alloy 59 weld could not satisfy the weld strength required for European LNG tank.

  • PDF

Welding Characteristic of Super Alloys for Nd:YAG Laser (Nd:YAG 레이저를 이용한 초합금 소재의 용접 특성 연구)

  • Yu, Sang-Hyeon;Lee, Je-Hun;Seo, Jeong;Kim, Jeong-O;Lee, Yeong-Ho
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.158-160
    • /
    • 2006
  • Super alloys are typically used for the liquid thruster in the aerospace industry. In this work, The bead-on-plate welding of Inconel 600, Inconel 625 and Haynes 230 using Nd:YAG laser are studied, in order to examine the effects of experimental parameters on their weldability. The micro-hardness and tensile strength of the specimens are also analyzed, to obtain the optimal welding conditions.

  • PDF

Wear performance of Plasma Transferred Arc deposited layers

  • Yoon, Byoung-Hyun;Kim, Hyung-Jun;Lee, Chang-Hee
    • Proceedings of the KWS Conference
    • /
    • 2001.05a
    • /
    • pp.245-247
    • /
    • 2001
  • In this study, the effects of dilution on the wear behavior of PTAW (Plasma Transferred Arc Welding) Inconel 625, Inconel 718 and Stellite 6 overlays on Nimonic 80A were investigated. Inorder to evaluate the wear performance, two-body and three-body abrasive wear test, and dry sliding wear test were performed. According to wear tests, the wear rate of deposit with dilution 30% was higher than that of dilution 10% by 10%, and it was also found the plastic deformation near worn surface.

  • PDF

Corrosion Analysis of Materials by High Temperature and Zn Fume (고온 및 Zn Fume에 의한 소재들의 부식성 분석)

  • Baek, Min Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.551-556
    • /
    • 2018
  • The material normally used in hot dip galvanizing facilities is SM45C (carbon steel for mechanical structure, KS standard), mainly because of its price. During this process, the oxidation of the plating facility occurs due to the heat of the Zn fumes coming from the molten zinc. Since the cycle time of the current facilities is 6 months, much time and money are wasted. In this study, the corrosive properties of various materials (Inconel625, STS304, SM45C) were investigated by oxidation in a high temperature and Zn fumes environment. The possibility of applying the hot-dip galvanizing equipment was investigated for each material. The Zn fumes were generated by directly bubbling Ar gas into Zn molten metal in a 650 degree furnace. High-temperature, Zn fumes corrosion was conducted for 30 days. The sample was removed after 30 days and the oxidation of the surface was confirmed with EDS and SEM, and the corrosion properties were examined using potentiodynamic polarization tests.

Investigation on Interfacial Microstructures of Stainless Steel/Inconel Bonded by Directed Energy Deposition of alloy Powders (레이저 직접 용착공정으로 형성된 스테인레스/인코넬 합금 계면의 미세조직 분석)

  • Eom, Yeong Seong;Kim, Kyung Tae;Jung, Soo-Ho;Yu, Jihun;Yang, Dong Yeol;Choe, Jungho;Sim, Chul Yong;An, Seung Jun
    • Journal of Powder Materials
    • /
    • v.27 no.3
    • /
    • pp.219-225
    • /
    • 2020
  • The directed energy deposition (DED) process of metal 3D printing technologies has been treated as an effective method for welding, repairing, and even 3-dimensional building of machinery parts. In this study, stainless steel 316L (STS316L) and Inconel 625 (IN625) alloy powders are additively manufactured using the DED process, and the microstructure of the fabricated STS316L/IN625 sample is investigated. In particular, there are no secondary phases in the interface between STS316L and the IN625 alloy. The EDS and Vickers hardness results clearly show compositionally and mechanically transient layers a few tens of micrometers in thickness. Interestingly, several cracks are only observed in the STS 316L rather than in the IN625 alloy near the interface. In addition, small-sized voids 200-400 nm in diameter that look like trapped pores are present in both materials. The cracks present near the interface are formed by tensile stress in STS316L caused by the difference in the CTE (coefficient of thermal expansion) between the two materials during the DED process. These results can provide fundamental information for the fabrication of machinery parts that require joining of two materials, such as valves.

Characteristics Evaluation on Welding Metal Zones Welded with Inconel 625 Filler Metal to Cast Steel for Piston Crown Material

  • Jeong, Jae-Hyun;Moon, Kyung-Man;Lee, Sung-Yul;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.542-547
    • /
    • 2015
  • Since the oil price has been significantly jumped for several years, a heavy oil of low quality has been mainly used in the diesel engine of the merchant ship. Thus, a combustion chamber of the engine has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas of the combustion chamber has been getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of the engine parts such as exhaust valve, piston crown and cylinder head surrounded with combustion chamber are more serious compared to the other parts of the engine. Therefore, an optimum repair welding for these engine parts is very important to prolong their lifetime in a economical point of view. In this study, Inconel 625 filler metal were welded with GTAW method in the cast steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected and base metal zones were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% $H_2SO_4$ solution. The weld metal and base metal zones exhibited the highest and lowest values of hardness respectively. Furthermore, the corrosion current density of the weld metal zone revealed the lowest value, having the highest value of hardness. The corrosive products with red color and local corrosion like as a pitting corrosion were considerably observed at the base metal zone, while these morphologies were not wholly observed in the weld metal zone. In particular, the polarization characteristics such as impedance, polarization curve and cyclic voltammogran associated with corrosion resistance property were well in good agreement with each other. Consequently, it is suggested that the mechanical and corrosion characteristics of the piston crown can be predominantly improved by repair welding method using the Inconel 625 electrode.