• Title/Summary/Keyword: Incompressible homogeneous fluid

Search Result 13, Processing Time 0.024 seconds

A High Resolution Scheme for Cavitating Flow

  • Shin B. R.;Oh S. J.;Obayashi S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.169-177
    • /
    • 2005
  • A high resolution scheme for solving gas-liquid two-phase flows with cavitation is described. This scheme uses the curvilinear coordinate grid and solves the density based momentum equations for mixture of gas-liquid medium with a preconditioning method to treat both compressible and incompressible flow characteristics. The present preconditioned method is based on the Runge-Kutta explicit finite-difference scheme, and is improved by using the diagonalization, the flux difference splitting and the MUSCL-TVD schemes to save computational effort and to increase stability and resolvability, especially at gas-liquid contact surfaces. A homogeneous equilibrium cavitation model is used to treat the gas-liquid two-phase medium in cavitating flow as a locally homogeneous pseudo-single-phase medium. Therefore, it is easy to solve cavitating flow, including wave propagation, large density changes and incompressible flow characteristic at low Mach number. Some numerical results obtained by the present scheme are shown.

  • PDF

Thermohydrodynamic Lubrication Analysis of Turbocharger Journal Bearing Involving the Mixture of Water within Engine Oil (엔진오일에 물이 혼합될 때 터보챠져 저어널 베어링의 열유체윤활 해석)

  • Chun, Sang-Myung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.131-140
    • /
    • 2012
  • In this study, using the governing equation for thermohydrodyamic lubrication involving the homogeneous mixture of incompressible fluid derived by based on the principle of continuum mechanics, it is discussed the effects of water within engine oil on the performance of high speed journal bearing of a turbocharger. The governing equations are the general equations being able to be applied on the mixture of Newtonian fluid and non- Newtonian fluid. Here, the fluid viscosity index, n of power-law non-Newtonian fluid is supposed to be 1 for the application of the journal bearing in a turbocharger lubricated with the mixture of two Newtonian fluid, for example, water within engine oil. The results related with the bearing performance are shown that the bearing friction is to decrease and the side leakage and bearing load increase as increasing the water content in an engine oil.

ON THE IMPROVED INSTABILITY REGION FOR THE CIRCULAR RAYLEIGH PROBLEM OF HYDRODYNAMIC STABILITY

  • G. CHANDRASHEKHAR;A. VENKATALAXMI
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.1
    • /
    • pp.155-165
    • /
    • 2023
  • We consider circular Rayleigh problem of hydrodynamic stability which deals with linear stability of axial flows of an incompressible iniviscid homogeneous fluid to axisymmetric disturbances. For this problem, we obtained two parabolic instability regions which intersect with Batchelor and Gill semi-circle under some condition. This has been illustrated with examples. Also, we derived upper bound for the amplification factor.

Development of FAMD Code to Calculate the Fluid Added Mass and Damping of Arbitrary Structures Submerged in Confined Viscous Fluid

  • Koo, Gyeong-Hoi;Lee, Jae-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.457-466
    • /
    • 2003
  • In this paper, the numerical finite element formulations were derived for the linearized Navier-Stokes' equations with assumptions of two-dimensional incompressible, homogeneous viscous fluid field, and small oscillation and the FAMD (Fluid Added Mass and Damping) code was developed for practical applications calculating the fluid added mass and damping. In formulations, a fluid domain is discretized with C$\^$0/-type quadratic quadrilateral elements containing eight nodes using a mixed interpolation method, i.e., the interpolation function for the velocity variable is approximated by a quadratic function based on all eight nodal points and the interpolation function for the pressure variable is approximated by a linear function based on the four nodal points at vertices. Using the developed code, the various characteristics of the fluid added mass and damping are investigated for the concentric cylindrical shell and the actual hexagon arrays of the liquid metal reactor cores.

Thermohydrodynamic Lubrication Analysis of Journal Bearing on Steam Turbine Shipping Engine Involving the Mixture of Water within Turbine Oil (터빈오일과 물이 혼합될 때 증기터빈 선박엔진 저어널 베어링의 열유체윤활 해석)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.27 no.2
    • /
    • pp.77-87
    • /
    • 2011
  • In this study, using the governing equation for thermohydrodyamic lubrication involving the homogeneous mixture of incompressible fluid derived by based on the principle of continuum mechanics, it is discussed the effects of water within turbine oil on the performance of high speed journal bearing of a steam turbine shipping engine. The governing equation is the general equation being able to be applied on the mixture of Newtonian fluid and non-Newtonian fluid. Here, the fluid viscosity index, n of power-law non-Newtonian fluid is supposed to be 1 for the application of the journal bearing in a steam turbine shipping engine lubricated with the mixture of two Newtonian fluid, for example, water within turbine oil. The results related with the bearing performance are showed.

Study on Bearing Performance Involving the Mixture of Water within Engine Oil in a Turbocharger Journal Bearing (터보챠저 저어널 베어링에서 물과 윤활유가 혼합될 때 베어링 성능에 관한 연구)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.27 no.4
    • /
    • pp.183-192
    • /
    • 2011
  • In this study, using the governing equations for thermohydrodyamic lubrication involving the homogeneous mixture of incompressible fluid derived by based on the principle of continuum mechanics, it is discussed the effects of water dispersed within engine oil on the performance of high speed journal bearing of a turbocharger. The governing equations are the general equations being able to be applied on the mixture of Newtonian fluid and non-Newtonian fluid. Here, the fluid viscosity index, n of power-law non-Newtonian fluid is supposed to be 1 for the application of the journal bearing on a turbocharger lubricated with the mixture of two Newtonian fluids, water dispersed within engine oil. The results related with the bearing performance are showed that the friction force and bearing load capacity decrease as increasing the volume percent of water.

NUMERICAL METHODS FOR CAVITATING FLOW

  • SHIN Byeong Rog
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.1-9
    • /
    • 2001
  • In this paper, some numerical methods recently developed for gas-liquid two-phase flows are reviewed. And then, a preconditioning method to solve cavitating flow by the author is introduced. This method employs a finite-difference Runge-Kutta method combined with MUSCL TVD scheme, and a homogeneous equilibrium cavitation model. So that it permits to treat simply the whole gas-liquid two-phase flow field including wave propagation, large density changes and incompressible flow characteristic at low Mach number. Finally, numerical results such as detailed observations of the unsteady cavity flows, a sheet cavitation break-off phenomena and some data related to performance characteristics of hydrofoils are shown.

  • PDF

FREE SURFACE WAVES OF A TWO-LAYER FLUID OVER A STEP

  • Choi, Jeong-Whan;Whang, Sung-Im
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.1
    • /
    • pp.173-181
    • /
    • 2000
  • The objective of this paper is to study two dimensional steady gravitational waves on the interface between two immiscible, inviscid and incompressible fluids bounded above by a horizontal rigid boundary and below by a rigid step. A KdV equation for the first order perturbation in an asymptotic expansion can appear. However the coefficient of the KdV theory fails in that case. By a unified asymptotic method, we overcome this difficulty and derive a modified KdV equation with forcing. We find homogeneous steady solutions and present numerical solutions.

  • PDF

NUMERICAL METHOD IN WAVE-BODY INTERACTIONS

  • MOUSAVIZADEGAN S. H.;RAHMAN M.
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.73-91
    • /
    • 2005
  • The application of Green's function in calculation of flow characteristics around submerged and floating bodies due to a regular wave is presented. It is assumed that the fluid is homogeneous, inviscid and incompressible, the flow is irrotational and all body motions are small. Two methods based on the boundary integral equation method (BIEM) are applied to solve associated problems. The first is a low order panel method with triangular flat patches and uniform distribution of velocity potential on each panel. The second method is a high order panel method in which the kernels of the integral equations are modified to make it nonsingular and amenable to solution by the Gaussian quadrature formula. The calculations are performed on a submerged sphere and some floating spheroids of different aspect ratios. The excellent level of agreement with the analytical solutions shows that the second method is more accurate and reliable.