• Title/Summary/Keyword: Incomplete factorization

Search Result 19, Processing Time 0.019 seconds

Improving on Matrix Factorization for Recommendation Systems by Using a Character-Level Convolutional Neural Network (문자 수준 컨볼루션 뉴럴 네트워크를 이용한 추천시스템에서의 행렬 분해법 개선)

  • Son, Donghee;Shim, Kyuseok
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.2
    • /
    • pp.93-98
    • /
    • 2018
  • Recommendation systems are used to provide items of interests for users to maximize a company's profit. Matrix factorization is frequently used by recommendation systems, based on an incomplete user-item rating matrix. However, as the number of items and users increase, it becomes difficult to make accurate recommendations due to the sparsity of data. To overcome this drawback, the use of text data related to items was recently suggested for matrix factorization algorithms. Furthermore, a word-level convolutional neural network was shown to be effective in the process of extracting the word-level features from the text data among these kinds of matrix factorization algorithms. However, it involves a large number of parameters to learn in the word-level convolutional neural network. Thus, we propose a matrix factorization algorithm which utilizes a character-level convolutional neural network with which to extract the character-level features from the text data. We also conducted a performance study with real-life datasets to show the effectiveness of the proposed matrix factorization algorithm.

A Probabilistic Tensor Factorization approach for Missing Data Inference in Mobile Crowd-Sensing

  • Akter, Shathee;Yoon, Seokhoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.63-72
    • /
    • 2021
  • Mobile crowd-sensing (MCS) is a promising sensing paradigm that leverages mobile users with smart devices to perform large-scale sensing tasks in order to provide services to specific applications in various domains. However, MCS sensing tasks may not always be successfully completed or timely completed for various reasons, such as accidentally leaving the tasks incomplete by the users, asynchronous transmission, or connection errors. This results in missing sensing data at specific locations and times, which can degrade the performance of the applications and lead to serious casualties. Therefore, in this paper, we propose a missing data inference approach, called missing data approximation with probabilistic tensor factorization (MDI-PTF), to approximate the missing values as closely as possible to the actual values while taking asynchronous data transmission time and different sensing locations of the mobile users into account. The proposed method first normalizes the data to limit the range of the possible values. Next, a probabilistic model of tensor factorization is formulated, and finally, the data are approximated using the gradient descent method. The performance of the proposed algorithm is verified by conducting simulations under various situations using different datasets.

Recovering Incomplete Data using Tucker Model for Tensor with Low-n-rank

  • Thieu, Thao Nguyen;Yang, Hyung-Jeong;Vu, Tien Duong;Kim, Sun-Hee
    • International Journal of Contents
    • /
    • v.12 no.3
    • /
    • pp.22-28
    • /
    • 2016
  • Tensor with missing or incomplete values is a ubiquitous problem in various fields such as biomedical signal processing, image processing, and social network analysis. In this paper, we considered how to reconstruct a dataset with missing values by using tensor form which is called tensor completion process. We applied Tucker factorization to solve tensor completion which was built base on optimization problem. We formulated the optimization objective function using components of Tucker model after decomposing. The weighted least square matric contained only known values of the tensor with low rank in its modes. A first order optimization method, namely Nonlinear Conjugated Gradient, was applied to solve the optimization problem. We demonstrated the effectiveness of the proposed method in EEG signals with about 70% missing entries compared to other algorithms. The relative error was proposed to compare the difference between original tensor and the process output.

AN ACCELERATED DEFLATION TECHNIQUE FOR LARGE SYMMETRIC GENERALIZED EIGENPROBLEMS

  • HYON, YUN-KYONG;JANG, HO-JONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.1
    • /
    • pp.99-106
    • /
    • 1999
  • An accelerated optimization technique combined with a stepwise deflation procedure is presented for the efficient evaluation of a few of the smallest eigenvalues and their corresponding eigenvectors of the generalized eigenproblems. The optimization is performed on the Rayleigh quotient of the deflated matrices by the aid of a preconditioned conjugate gradient scheme with the incomplete Cholesky factorization.

  • PDF

A BLOCKED VARIANT OF THE CONJUGATE GRADIENT METHOD

  • Yun, Jae Heon;Lee, Ji Young;Kim, Sang Wook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.129-142
    • /
    • 1998
  • In this paper, we propose a blocked variant of the Conjugate Gradient method which performs as well as and has coarser parallelism than the classical Conjugate Gradient method.

  • PDF

CONVERGENCE OF MULTISPLITTING METHOD FOR A SYMMETRIC POSITIVE DEFINITE MATRIX

  • YUN JAE HEON;OH SEYOUNG;KIM EUN HEUI
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.59-72
    • /
    • 2005
  • We study convergence of symmetric multisplitting method associated with many different multisplittings for solving a linear system whose coefficient matrix is a symmetric positive definite matrix which is not an H-matrix.

THE EFFECT OF BLOCK RED-BLACK ORDERING ON BLOCK ILU PRECONDITIONER FOR SPARSE MATRICES

  • GUESSOUS N.;SOUHAR O.
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.283-296
    • /
    • 2005
  • It is well known that the ordering of the unknowns can have a significant effect on the convergence of a preconditioned iterative method and on its implementation on a parallel computer. To do so, we introduce a block red-black coloring to increase the degree of parallelism in the application of the block ILU preconditioner for solving sparse matrices, arising from convection-diffusion equations discretized using the finite difference scheme (five-point operator). We study the preconditioned PGMRES iterative method for solving these linear systems.

Multilevel acceleration of scattering-source iterations with application to electron transport

  • Drumm, Clif;Fan, Wesley
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1114-1124
    • /
    • 2017
  • Acceleration/preconditioning strategies available in the SCEPTRE radiation transport code are described. A flexible transport synthetic acceleration (TSA) algorithm that uses a low-order discrete-ordinates ($S_N$) or spherical-harmonics ($P_N$) solve to accelerate convergence of a high-order $S_N$ source-iteration (SI) solve is described. Convergence of the low-order solves can be further accelerated by applying off-the-shelf incomplete-factorization or algebraic-multigrid methods. Also available is an algorithm that uses a generalized minimum residual (GMRES) iterative method rather than SI for convergence, using a parallel sweep-based solver to build up a Krylov subspace. TSA has been applied as a preconditioner to accelerate the convergence of the GMRES iterations. The methods are applied to several problems involving electron transport and problems with artificial cross sections with large scattering ratios. These methods were compared and evaluated by considering material discontinuities and scattering anisotropy. Observed accelerations obtained are highly problem dependent, but speedup factors around 10 have been observed in typical applications.

A PRECONDITIONER FOR THE LSQR ALGORITHM

  • Karimi, Saeed;Salkuyeh, Davod Khojasteh;Toutounian, Faezeh
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.213-222
    • /
    • 2008
  • Iterative methods are often suitable for solving least squares problems min$||Ax-b||_2$, where A $\epsilon\;\mathbb{R}^{m{\times}n}$ is large and sparse. The well known LSQR algorithm is among the iterative methods for solving these problems. A good preconditioner is often needed to speedup the LSQR convergence. In this paper we present the numerical experiments of applying a well known preconditioner for the LSQR algorithm. The preconditioner is based on the $A^T$ A-orthogonalization process which furnishes an incomplete upper-lower factorization of the inverse of the normal matrix $A^T$ A. The main advantage of this preconditioner is that we apply only one of the factors as a right preconditioner for the LSQR algorithm applied to the least squares problem min$||Ax-b||_2$. The preconditioner needs only the sparse matrix-vector product operations and significantly reduces the solution time compared to the unpreconditioned iteration. Finally, some numerical experiments on test matrices from Harwell-Boeing collection are presented to show the robustness and efficiency of this preconditioner.

  • PDF