• Title/Summary/Keyword: Inclusion Complex

Search Result 284, Processing Time 0.027 seconds

Preparation and Evaluation of Inclusion Complex of Lansoprazole with 2-HP-β-Cyclodextrin and Meglumine (2-HP-β-시클로덱스트린과 메글루민을 이용한 란소프라졸의 포접화합물 제조 및 평가)

  • Lee, Jung-Woo;Kim, Jung-Su;Chang, Hye-Jin;Lee, Gye-Won;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.4
    • /
    • pp.269-274
    • /
    • 2004
  • To enhance the solubility and stability of lansoprazole (LAN), new proton pump inhibitor, we were prepared various molar ratio of inclusion complex with $2-hydroxypropyl-{\beta}-cyclodextrin$ (HPCD) and organic alkali agent, meglumine (MEG). Inclusion complex formation of LAN with HPCD was investigated by Differential Scanning Calorimetry and X-ray diffractometry. The aqueous solubilities of inclusion complexes, and the stabilities of 1:4 and 1:5 inclusion complexes in aqueous solutions containing different concentrations of MEG were examined. The stability of 1:5 LAN-HPCD inclusion complex containing MEG, which was equaled to amount of LAN, was performed in 0.9% NaCl and 5% dextrose solution. The formation of inclusion complex of LAN with HPCD was $A_L$ type and the molar ratio of complex was 1:1. The stability constant was $41.557\;M^{-1}$. As molar ratio of LAN to HPCD was increased, solubility of inclusion complex was increased. 1:5 LAN-HPCD inclusion complex was more stable than 1:4 LAN-HPCD inclusion complex. And as contained MEG amount in LAN solution was increased, stability of 1:4 and 1:5 LAN-HPCD inclusion complexes was improved. Also stability of 1:5 LAN-HPCD-MEG inclusion complex in 0.9% NaCl solution and 5% dextrose solution was similar to it in water at room temperature, but it was unstable at $40^{\circ}C$.

Pharmaceutical Studies on Inclusion Complex of Norfloxacin with ${\beta}-Cyclodextrin$ (Norfloxacin과 ${\beta}-Cyclodextrin$간의 Inclusion Complex에 관한 약제학적 연구)

  • Jee, Ung-Kil;Park, Mork-Soon;Kwon, Joong-Moo
    • Journal of Pharmaceutical Investigation
    • /
    • v.17 no.1
    • /
    • pp.1-14
    • /
    • 1987
  • To increase the bioavailability of norfloxacin, inclusion complex of antimicrobial agent norfloxacin with ${\beta}-Cyclodextrin$ was prepared and studied by the solubility method, spectrophotometric methods(UV, IR, $^1H-NMR$), differential thermal analysis, powder X-ray diffractometry, the physical properties, the antimicrobial activity, DNA binding and in situ recirculation technique. The conclusions are summerized as following; 1) The inclusion complexation was identified by means of solubility, spectrophotometry(UV, IR, NMR), DTA and X-ray diffraction. 2) The molar ratio of $norfloxacin-{\beta}-cyclodextrin$ complex was 1 : 1. 3) The stability constant of $norfloxacin-{\beta}-cyclodextrin$ complex was $21.5\;M^{-1}$, and both true and apparent partition coefficients of the inclusion complex were larger than those of norfloxacin. 4) The time required to dissolve 60% $(T_{60}%)$ of the inclusion complex was 120 min. in distilled water and in the artificial intestinal juice, while norfloxacin did not reach to 60% dissolution within 120 min. 5) The antimicrobial activity of the inclusion complex against Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus aureus showed no significant difference compared to that of norfloxacin alone. 6) Studies on binding properties between the inclusion complex and norfloxacin alone to DNA according to equilibrium dialysis showed no significant differency. 7) In situ absorption rates (Ka) of inclusion complex and norfloxacin alone were 0.229 and $0.102hr^{-1}$, respectively.

  • PDF

Stabilization of Polyphenolic Antioxidants Using Inclusion Complexation with Cyclodextrin and Their Utilization as the Fresh-food Preservative (폴리페놀계 천연 항산화제의 cyclodextrin inclusion complexation을 통한 안정화와 식품 보존제로의 활용)

  • Kim, Tae-Kwon;Shin, Hyun-Dong;Lee, Yong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.266-271
    • /
    • 2003
  • Insoluble polyphenol antioxidants, quercetin and catechin, were stabilized through the complexation with cyclodextrin to increase heat and pH stabilities. Comparison of inclusion complex formabilities of quercetin and catechin with ${\alpha}-,\;{\beta}-$, and ${\gamma}-CDs$ revealed ${\beta}-CD$ to be the most suitable result. Optimal molar mixing ratio of ${\beta}-CD$ and quercetin or catechin for inclusion complex formation was found to be 1 : 1. Inclusion complexation was confirmed using differential scanning calorimetry. Solubility of ${\beta}-CD-antioxidant$ inclusion complexes increased compared with native antioxidants, Stability against temperature and pH of ${\beta}-CD-antioxidant$ inclusion complex analyzed revealed antioxidant activities of ${\beta}-CD-quercetin$ and catechin inclusion complexes have higher stabilization compare to raw quercetin and catechin. Peroxide value of linoleic acid dissolved in water decreased substantionally after using ${\beta}-CD-quercetin$ inclusion complex. ${\beta}-CD-antioxidant$ inclusion complex can be used effectively as a fresh-food preservative.

Comparison of Inclusion Complex Formation Capacity of Cyclodextrins with Various Molecules and Characterization of Cyclodextrin-fatty Acid Complex (Cyclodextrin의 Inclusion Complex 형성능과 Fatty Acid와의 Complex 형성조건과 특성)

  • 이용현;정승환박동찬
    • KSBB Journal
    • /
    • v.10 no.2
    • /
    • pp.149-158
    • /
    • 1995
  • The capacity of inclusion complex formation between ${\alpha}$-, ${\beta}$-, ${\gamma}$-cyclodextrins(CDs) and various compounds, such as pH indicators, biloslalns, glycoside, amino acid, and fatty acids, was compared. Fatty acid was identified as the most suitable ligand for fractionation of CDs in terms of capacity and selectivity. The effects of complex formation conditions, such as, mixing ratio of CD and fatty acid, pH, ionic strength, and temperature, on the capacity of fatty acrid-CD complex was also investigated. The carbon number of fatty acids was identified as the most significant factor determining the capacity and selectivity of inclusion complex formation of CDs. Capric acid(C10) and palmitic acid(C16) showed high specificity for ${\alpha}$- and ${\beta}$-CDs, respectively. Under the optimal conditions, the molar ratio of complex formed was found to be 1.0:2.6 for ${\alpha}$-CD/capric acid and 1.0:1.9 for ${\beta}$-CD/palmitic acid. X-ray diffraction and infrared spectrum of the formed inclusion complex were analyzed. The changes of enthalpy($\Delta$H) of the inclusion complex formation reaction was evaluated by differential scanning calorimetry, showed that the reaction was endothermic.

  • PDF

Preparation and Stability of $Iodine-{\beta}-Cyclodextrin$ Inclusion Complex (요오드-${\beta}$-시클로덱스트린 포접 복합체의 제조 및 안정성)

  • Jee, Ung-Kil;Park, Kyung-Lae;Park, Mork-Soon;Baek, Myung-Ki;Park, Jin-Kyu
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.3
    • /
    • pp.205-211
    • /
    • 1995
  • To increase the solubility of iodine and iodine releasing agents, which are used widely as a topical broad spectrum antiseptics and disinfectant sanitizers, its inclusion complexes were prepared and studied. Inclusion complexes of iodine with ${\beta}-cyclodextrin$ were prepared by coprecipitation method and complex formation was acertained by differential scanning calorimetry and microscopic observation. Iodine content of inclusion complex was determined by means of iodometry. Tablets containing inclusion complex were manufactured with sugar, citric acid, magnesium stearate, dextrose. Stability of inclusion complexes and tablets was evaluated by accelerated stability test, and comparing with PVP-iodine. During preparation, use of 50% ethanol solution is preferable to water as the medium because the former resulted in more stable complex for a month under accelerated storage conditions. Solubility of iodine in KI aqueous solution was 0.048 g/ml and lower than in 50% ethanol solution. Inclusion complex and its tablets were very stable at severe condition for one month, and comparable to PVP-iodine in the aspect of stability. Inclusion complex tabletswere not affected with citric acid, sugar, dextrose, and direct tableting method was recommendable because wet granulation using ethanol gave some release of included iodine during process.

  • PDF

Inclusion Compound of Flurbiprofen with Cyclodextrin (Flurbiprofen과 Cyclodextrin과의 포접화물(包接化物)에 관한 연구(硏究))

  • Paik, Wan-Sook;Young, Jae-Ick;Kim, Kil-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.15 no.1
    • /
    • pp.15-21
    • /
    • 1985
  • The inclusion of ${\alpha}-cyclodextrin$ and ${\beta}-cyclodextrin$ with flurbiprofen in aqueous phase was investigated by UV absorption and circular dichroism spectroscopies. The inclusion complex in solid powder form were made by the freeze-drying and coprecipitation methods in molar ratio 1:1. The inclusion complex formation was confirmed by infrared absorption spectroscopy. The freeze-drying method was successful in obtaining the inclusion compounds compared with the coprecipitation method. The dissolution of solid flurbiprofen inclusion complex was examined in comparison with those of flurbiprofen alone. The inclusion complex obtained by freeze-drying method increased the dissolution rate.

  • PDF

Inclusion Complexation of Clonixin with Cyclodextrins (클로닉신과 시클로덱스트린과의 포접복합체 형성)

  • Park, Sun-Joo;Kim, Kil-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.4
    • /
    • pp.283-289
    • /
    • 1995
  • The aim of this study is to increase the solubility and dissolution rate of clonixin by inclusion complex formation. Inclusion complexes of clonixin, a non-steroidal antiinflammatory drug, with ${\beta]-cyclodextrin$ were $2-hydrolrypropyl-{\beta]-cyclodextrin$ were prepared by freeze drying method. Inclusion complex formation of clonixin with cyclodextrins was determined by UV, IR and DSC. The apparent stability constants were calculated from the phase solubility diagrams. Dissolution rate and solubility of clonixin in water markedly increased by the complex formation.

  • PDF

Enhancement of Solubility and Disolution Rate of Poorly Water-soluble Naproxen by Coplexation with $2-Hyldroxypropylo-{\beta}-cyclodextrin$

  • Lee, Beom-Jin;Lee, Jeong-Ran
    • Archives of Pharmacal Research
    • /
    • v.18 no.1
    • /
    • pp.22-26
    • /
    • 1995
  • The solubility and dissolution rate of naproxen (NPX) complexed with 2-hydroxypropyl-.betha.-cyc-lodextrin (2-HP.betha.CD) using coprecipitation, evaporation, freeze-drying and kneading method were investigated. Solubility of NPX linearly increased (correlation cefficient, 0.995) as $2-HP\betaCD$ concentraction increased, resutling in $A_l$ type phase solubility curve. Inclusion complexes prepared by four different methods were compared by different methods were compared by dfferential scanning calorimetry(DSC). The NPX showed sharp endothemic peak around $156^{\circ}C$ but inclusion complexes by evaporation, freeze-drying and kneading method showed very broad peak without distinct phase transtion temperature. In contrast, inclusion complex prepared by coprecipitation method resulted in detectable peak around $156^{\circ}C$ which is similar to NPX, suggesting incoplete formation of indusion co plex. Dissolution rate of inclusion complexes prepared by evaporation, frezz-drying and kneding except coprecipitation method was largely enhanced in the simultaed gastric and intestinal fluid when compared to NPX powder and commercial $NA-XEN^\registered$tablet. However, about 65% of NPX in gstric fluid. in case of inclusion complex prepared by coprecipitation method, formation of inclusion complex appeared to be incoplete, resulting in no marked enhancement of dissolution rate. From these findings, inclusion complexes of poorly water-soluble NPX with $2-HP\betaCD$ were useful to increase soubility and dissolution rate, resting in enhancement of bioavailability and minimization of gastrointestinal toxicity of drug upon oral administration of inclusion complex.

  • PDF

Preparation and Evaluation of Inclusion Complex of Muscone with ${\beta}-Cyclodextrin$ (무스콘의 ${\beta}$-시클로덱스트린 포접 복합체의 제조 및 평가)

  • Kwack, Eun-Sun;Cho, In-Sook;Lee, Gye-Won;Jee, Ung-Kil;Park, Dae-Kyu
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.4
    • /
    • pp.265-269
    • /
    • 1997
  • An inclusion complex of muscone with ${\beta}-cyclodextrin$ (CD), as a solid form of muscone, was prepared to increase the solubility of muscone. The molar ratio of muscone to ${\beta}-CD$ in complex was in the range of $1:1{\sim}1:5$ when prepared by freeze-drying method. The interaction of muscone with ${\beta}-CD$ in solid state was investigated by Infrared (IR) spectroscopy and differential scanning calorimetry (DSC). IR and DSC studies between $muscone-{\beta}-CD$ inclusion complex and physical mixture showed that $muscone-{\beta}-CD$ inclusion complex was prepared stably. From the amount of muscone incorporated in the inclusion complex, it was found that the molar ratio of muscone : ${\beta}-CD$ was 1:1. Relative spatial position of muscone and ${\beta}-CD$ was observed by Hyperchem molecular modelling program.

  • PDF

Inclusion Complex of $Permethylated-{\bata}-Cyclodextrin$ with Benzaldehyde

  • Choi Hee-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.179-183
    • /
    • 1992
  • A stable solid new inclusion complex with benzaldehyde and $permethyl-\beta-cyclodextrin$ was obtained by recrystallization method. The structure of the $benzaldehyde-permethyl-\beta-cyclodextrin$ inclusion complex in the solid and solution state have been studied by UV, IR, $^1H-NMR$, $^{13}C-NMR$ and FAB-mass spectroscopy.