• Title/Summary/Keyword: Inclined LIGA Process

Search Result 3, Processing Time 0.015 seconds

Fabrication of Microneedle Array Using Inclined LIGA Process (경사 LIGA 공정을 이용한 미세 바늘 어레이의 제작)

  • Moon, Sang-Jun;Lee, Seung-S.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1871-1876
    • /
    • 2004
  • We demonstrate a novel fabrication technology for the microneedle array that can be used in the medical test field, which is transdermal drug delivery and blood analyte sampling. Previous researchers have used silicon-processed micromachining, a reactive ion etching, and molding techniques for the fabrication of microneedle array. However, these fabrication techniques have somewhat limitations apply to the microneedle array fabrication according to its application. Inclined LIGA process is suggested to overcome these problems. This process provides easier, sharper and longer out-of-plane microneedle array structure than conventional silicon-processed fabrication method did. Additionally, because of the advantage of the LIGA process based on mold fabrication for mass production, the polymer, PMMA(PolyMethylMethAcrylate), based microneedle array is useful as the mold base of nickel electroplating process; on the other hand, silicon-processed microneedle array is used in itself. In this research, we fabricate different types of out-of-plane microneedle array, which have different shape of tip, base and hole structure, using the inclined LIGA process. The fabricated microneedles have proper mechanical strength, height and sharpness to puncture human hand epidermis or dermis with less pain and without needle tip break during penetrating the skin.

Fabrication of A 3-facet Mirror Using the LIGA Process (LIGA 공정을 이용한 삼면반사체 제작)

  • Oh, Dong-Young;Jung, Dong-Kwan;Park, Noh Y.;Chang, Suk-Sang;Lee, Seung-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.172-179
    • /
    • 2000
  • In this paper a technology for the fabrication of the oblique structure using the LIGA process will be presented. The fabricated microstructure is a tetrahedral 3- facet mirror. The mirror has an equilateral triangular base of hundreds ${\mu}m$ length mirror-like three side-facets inclined to the base at 45$^{\circ}$ and knife edges. Two regular triangles of 45$^{\circ}$ and tan-12. After development the shaded part of the PMMA the tetrahedral mirror remains, The completed mirror shows excellent aspects of mirror-like facets and knife-edges. By controlling the gap between the mask and the substrate the size of mirror easily can be changed. This mirror would be used as a laser beam splitter for the feedback control of the HDD slider.

  • PDF

Microlens Micro V-groove Fabrication by the Modified LIGA Process (변형 DEEP X-ray를 이용한 마이크로 렌즈 및 V-groove 제작)

  • 이정아;이승섭;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.290-295
    • /
    • 2004
  • Mircolens and microlens V-groove are realized using a novel fabrication technology based on the exposure of a resist, usually PMMA, to deep X-rays and subsequent thermal treatment and inclined deep X-ray lithography, respectively. The fabrication technology is very simple and produces microlenses and microlens V-groove with good surface roughness of several nm. The molecular weight and glass transition temperature of PMMA is reduced when it is irradiated with deep X-rays. The microlenses were produced through the effects of volume change, surface tension, and reflow during thermal treatment of irradiated PMMA. Microlenses were produced with diameters ranging from 30 to $1500\mu\textrm{m}$. The surface X-ray mask is also fabricated to realize microlens arrays on PMMA sheet with a large area. The size of the micro V-groove is fabricated in the range of 12~$60\mu\textrm{m}$.