• Title/Summary/Keyword: Inclined Baffles

Search Result 17, Processing Time 0.023 seconds

Experimental and Numerical Analysis for Effects of Two Inclined Baffles on Heat Transfer Augmentation in a Rectangular Duct (사각 덕트 내에 설치된 2개의 경사진 배플에 의한 열전달 증진 효과에 관한 실험 수치해석)

  • Kang, Ho-Keun;Ahn, Soo-Whan;Putra, Ary Bachtiar Krishna
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.11
    • /
    • pp.751-760
    • /
    • 2007
  • Baffles enhance heat transfer by disturbing boundary layer and bulk flow, creating impingement, and increasing heat transfer surface area. This study was performed to determine how the two inclined baffles (${\alpha}=5^{\circ}$ perforated models) placed at a rectangular channel affect heat transfer and associated friction characteristics. The parametric effects of perforated baffles (3, 6 and 12 holes) and flow Reynolds number ranging from 28,900 to 61,800 on the heated target surface are explored. Comparisons of the experimental data with the numerical results by commercial code CFX 10.0 are presented. As for the investigation of heat transfer behaviors on local Nusselt number with two baffles placed at $x/D_h=0.8$ and $x/D_h=8.0$ of the edge of baffles, it is evident that the inclined perforated baffles augment overall heat transfer significantly by both jet impingement and boundary layer separation. There exists an optimum perforation density to maximize heat transfer coefficients; i.e., the average Nusselt number increases with increasing number of holes, but the friction factor decreases with an increase in the hole number placed at baffles.

Numerical analysis of heat transfer and friction factors in a duct having circular perforated baffles (원형 다공배플이 있는 덕트에서의 열전달과 마찰계수에 관한 수치해석)

  • Oh, S.K.;Ahn, S.W.;Ary, Bachtiar Krishna Putra;Bae, S.T.
    • Journal of Power System Engineering
    • /
    • v.16 no.4
    • /
    • pp.44-50
    • /
    • 2012
  • The present numerical study was performed to determine how the two perforated baffles( Inclined angle=$5^{\circ}$; perforation diameter=2cm) placed at a rectangular duct affect heat transfer and associated friction factors. The parametric effects of perforated baffles(3, 6 and 12 holes) and flow Reynolds number ranging from 28,900 to 61,000 on the heated target surface are explored. As for the investigation of heat transfer behaviours on the local Nusselt number with two baffles placed at $x/D_h=0.8$ and $x/D_h=0.8$ of the edge baffles, it is evident that the average Nusselt number increases with increasing number of holes, but the friction factor decreases with an increase in the hole number placed at baffles. The numerical results by commercial code CFX 10.0 are confirmed with the experimental data.

A Numerical Study on Heat Transfer and Friction in Rectangular Channel with Inclined Perforated Baffles

  • Putra, Ary Bachtiar Krishna;Ahn, Soo-Whan;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1003-1012
    • /
    • 2008
  • A three dimensional numerical study has been applied to predict the turbulent fluid flow and heat transfer characteristics for the rectangular channel with different types of baffles. Four different types of the baffles are used. The inclined baffles have the width of 19.8 cm, the square diamond type hole having one side length of 2.55 cm, and the inclination angle of $5^{\circ}$. Reynolds number is varied between 23,000 and 57,000. The SST k-${\omega}$ turbulence model is used in the present numerical study. The validity of the numerical results is examined with the experimental data. The numerical results of the flow field depict that the flow patterns around the different baffle type are entirely different and it significantly affects the local heat transfer characteristics. The heat transfer and friction factor depend significantly on the number of baffle holes. It is found that the heat transfer enhancement of baffle type II (3 hole baffle) has the best values.

The Characteristics of Heat Transfer in a Channel with Wire-screen Baffles (와이어 스크린 배플이 설치된 채널에서의 열전달 특성)

  • Kim, W.C.;Ary, B.K.;Ahn, S.W.;Kang, H.K.
    • Journal of Power System Engineering
    • /
    • v.13 no.2
    • /
    • pp.11-17
    • /
    • 2009
  • The heat transfer characteristics of flow through two inclined wire-mesh baffles in a rectangular channel were investigated experimentally with varying the mesh number of wire screens and inclination angle of the baffles. Two different types of wire meshes such as dutch and plain weaves, were used in this experiment. Three kinds of baffle plates with different mesh specifications in the dutch weave and four different kinds in the plain weave were manufactured. Baffles were mounted on bottom wall with varied angles of inclination. Reynolds number was varied from 23,000 to 57,000. It is found that the placement of inclined wire-mesh baffles in the channel affects the heat transfer characteristics by combining both jet impingement and flow disturbance. The wire screen modified the flow structure leading to a change in the heat transfer characteristics. The results show that the baffle plate with the most number of mesh (type SA) has the highest heat transfer rate.

  • PDF

Heat Transfer and Friction Behaviour in a Channel with an Inclined Perforated Baffle

  • Krishna Putra, Ary Bachtiar;Ahn, Soo-Whan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.2
    • /
    • pp.70-76
    • /
    • 2008
  • The effects of the inclined perforated baffles on the distributions of the local heat transfer coefficients and friction factors for air flows in a rectangular channel were determined for Reynolds numbers from 23,000 to 57,000. Four different types of the baffle are used. The inclined baffles have the width of 19.8cm, the square diamond type hole having one side length of 2.55cm, and the inclination angle of $5^{\circ}$, whereas the corresponding channel width-to-height ratio was 4.95. Results show that the heat transfer and friction factor depend significantly on the number of baffle holes and Reynolds number. The friction factor decreases with increasing Reynolds number and the number of holes on the baffle, and the heat transfer performance of baffle type II (3 hole baffle) has the best value.

Fluid Flow Resistance in a Channel with Wire-screen Baffles (와이어 스크린 배플이 설치된 채널에서의 유체유동 저항)

  • Oh, S.K.;Ary, B.K.;Ahn, S.W.
    • Journal of Power System Engineering
    • /
    • v.13 no.2
    • /
    • pp.36-41
    • /
    • 2009
  • An experimental investigation was conducted to examine the fluid flow resistance in the rectangular channel with two inclined wire screen baffles. Two different types of wire screens; dutch weave and plain weave, were used as baffle devices in this experiment. Three kinds of baffles with different mesh specifications were made up of dutch type and four different kinds of baffles were made up of plain weave type. The stainless steel wire screen baffles were mounted on the bottom wall with varied angle inclination. Reynolds numbers were varied from 23,000 to 57,000. Results show that the mesh number of baffles plays an important role on friction factor behaviour. It is found that the baffle with the most number of meshes (type SA) has the highest fluid flow resistance.

  • PDF

Evaluation of Hydraulic Characteristics Influenced by Different Deflector Baffles in the Sedimentation Basin with Inclined Plate Settler (경사판 침전지에서 저류벽의 설치위치에 따른 수리학적 특성의 평가)

  • Yu, Myong-Jin;Kim, Hyun-Chul;Ryu, Seong-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.40-45
    • /
    • 2005
  • Sedimentation is one of the most common and important units in conventional water treatment plant. Structure such as various baffle walls and inclined plate settler may be obstacles to the horizontal flow when it is poorly designed. Therefore, the effects of these structures on characteristics of hydraulic flow must be evaluated to improve the settling efficiency of the floc. The hydraulic characteristic of the two sedimentations at Y water treatment plant (YWTP), which have different deflector baffles inside the settling basin, were investigated by tracer (fluoride) test. The inclined plate settler installed inside settling basin caused an undesirable impact on horizontal flow and produced dead zone. Solid baffle wall under the plate settler could help to minimize the formation of density currents and flow short circuiting. NaF used as a tracer was recovered more than 90% at investigated all basins. Morill index ($t_{90}/t_{10}$), Modal index ($t_p/T-HRT$) and short-circuiting index ($[M-HRT-t_p]/M-HRT$) were determined from tracer test results performed at YWTP. Those indices ranged 2.95~3.02, 0.40~0.53 and 0.32~0.46, respectively.

Effects of Baffles on Heat Transfer and Friction Factors in a Rectangular Channel (사각채널에 설치된 배플이 열전달과 마찰계수에 미치는 효과)

  • Ahn, Soo-Whan;Kang, Ho-Keun;Bae, Sung-Taek;Song, Min-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.693-701
    • /
    • 2006
  • The present work investigates the local heat transfer characteristics and the associated frictional loss in a rectangular channel with inclined solid and perforated baffles to obtain the basic design data for gas turbine. Five different geometries of baffles such as 1) solid (without hole), 2) three holes, 3) six holes, 4) nine holes, 5) twelve holes were covered. A combination of two baffles of same overall size is used. The flow Reynolds number is ranged from 28,900 to 70,100. The placement of baffles augments the overall heat transfer greatly by combining both jet impingement and the boundary layer separation. The present results show that the average Nusselt number distribution is strongly dependent on number of holes in the baffle plates, i.e., the average Nusselt number increases with increasing number of holes. The friction factor decreases also with increasing the number of holes. however. its value increases with increasing the Reynolds number.

Experimental and Numerical Investigation for the Effect of Baffles on Heat Transfer Behaviors in a Rectangular Channel (사각채널에서 설치된 배플에 의한 열전달 거동에 관한 실험 및 수치해석)

  • Kang, Ho-Keun;Ahn, Soo-Whan;Bae, Sung-Taek
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.45-46
    • /
    • 2006
  • Experimental and numerical analysis on the heat transfer behaviors and the associated frictional loss in a rectangular channel with two inclined perforated baffles($\;5^{\circ}$) mounted on the bottom plate has been systematically performed. The parametric effects of perforated baffles (3, 6, 9 holes) and flow Reynolds number on heat transfer characteristics of the heated target surface are explored. A combination of two baffles of same overall size was considered and the flow Reynolds number for this study is varied between 28,900 and 61,800. Comparisons of the experimental data with the numerical results by commercial code CFX 5.7 are made. As for the investigation of heat transfer behaviors on local Nusselt number with the two baffles installed at $x/D_h=0.8\;and\;x/D_h=8.0$, it is evident that there exist an optimum perforation density to maximize heat transfer coefficients; i.e., the maximum Nusselt number decreases with increasing number of holes.

  • PDF

Heat Transfer and Friction Factors in the Channel with an Inclined Square Diamond Type Perforated Baffle (정 다이아몬드 형 구멍이 있는 배플을 가진 채널에서의 열전달과 마찰계수)

  • Oh, S.K.;Putra, A.B.K.;Ahn, S.W.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.26-31
    • /
    • 2008
  • This experimental study investigates the local heat transfer enhancement characteristics and the associated frictional head loss in the rectangular channel with a single inclined baffle. Four different types of the baffle are used. The inclined baffles have the width of 19.8 cm, the square diamond of $2.55cm{\times}2.55cm$, and the inclination angle of 5o, and number of holes of up to 9. Reynolds number is varied between 23,000 and 57,000. Results show that the heat transfer and friction factor depend significantly on the number of baffle holes and Reynolds number. The friction factor decreases with increasing Reynolds number and the number of holes on the baffle. It is found that the heat transfer performance of baffle type II(3 hole baffle) has the best values.

  • PDF