• Title/Summary/Keyword: Inclination angles

Search Result 233, Processing Time 0.027 seconds

치아의 교합경사각도에 관한 연구

  • Kim, Yung-Soo;Park, Doo-Hwan;Yang, Jae-Ho;Sin, Bum-Chul
    • The Journal of the Korean dental association
    • /
    • v.12 no.5
    • /
    • pp.333-338
    • /
    • 1974
  • The tests on the individual cusp inclination of the posterior teeth were performed on the fifty normal subjects selected from the students of Seoul National University, Collage of Dentistry. Especially, bucco-lingual cusp inclinations and open angles were measured by means of the cusp inclination measuring instrument device by authors. The results were as follows; 1. The differences between the right and left side teeth were hardly recognized. 2. In bucco-lingual relationship, lingual cusps in upper molars and buccal cusps in lower molars revealed higher degrees than buccal cusps in upper molars and lingual cussps in lower molars 3. Generally, the differences between upper and lower teeth were not clearly defined, and the cusp angles of the molars were greater than those of the premolars. 4. The rough basis of the curve of Wilson was recognized

  • PDF

Experimental and numerical analysis of mixed mode I/III fracture of sandstone using three-point bending specimens

  • Li, Yifan;Dong, Shiming;Pavier, Martyn J.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.725-736
    • /
    • 2020
  • In this work the mixed mode I/III fracture of sandstone has been studied experimentally and numerically. The experimental work used three-point bending specimens containing pre-existing cracks, machined at various inclination angles so as to achieve varying proportions of mode I to mode III loading. Dimensionless stress intensity factors were calculated using the extended finite element method (XFEM) for and compared with existing results from literature calculated using conventional finite element method. A total of 28 samples were used to conduct the fracture test with 4 specimens for each of 7 different inclination angles. The fracture load and the geometry of the fracture surface were obtained for different mode mixities. Prediction of the fracture loads and the geometry of the fracture surface were made using XFEM coupled with a cohesive zone model (CZM) and showed a good comparison with the experimental results.

Pool-Boiling Critical Heat Flux of Water on Small Plates: Effects of Surface Orientation and Size

  • Yang, Soo-Hyung;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.337-342
    • /
    • 1996
  • The pool-boiling critical heat flux (CHF) of water on small flat plates has been experimentally investigated focusing on the effects of the inclination angle and size of the heated surface under near atmospheric pressure. The second-phase experiment was accomplished to find out the general CHF behavior for over-all inclination angles from -90$^{\circ}$ to 90$^{\circ}$using two plate-type test sections (30$\times$150 mm and 40$\times$150 mm) submerged in a slightly subcooled water pool. Test results generally confirm the first-phase findings and show little effect of inclination angle for inclined upward-facing cases. CHF position moves to lower position with the increase of the heater characteristic size and inclination angle(from -30$^{\circ}$to 60$^{\circ}$).

  • PDF

Dynamic response of layered hyperbolic cooling tower considering the effects of support inclinations

  • Asadzadeh, Esmaeil;Alam, Mehtab;Asadzadeh, Sahebali
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.797-816
    • /
    • 2014
  • Cooling tower is analyzed as an assembly of layered nonlinear shell elements. Geometric representation of the shell is enabled through layered nonlinear shell elements to define the different layers of reinforcements and concrete by considering the material nonlinearity of each layer for the cooling tower shell. Modal analysis using Ritz vector analysis and nonlinear time history analysis by direct integration method have been carried out to study the effects of the inclination of the supporting columns of the cooling tower shell on its dynamic characteristics. The cooling tower is supported by I-type columns and ${\Lambda}$-type columns supports having the different inclination angles. Relevant comparisons of the dynamic response of the structural system at the base level (at the junction of the column and shell), throat level and at the top of the tower have been made. Dynamic response of the cooling tower is found to be significantly sensitive to the change of the inclination of the supporting columns. It is also found that the stiffness of the structure system increases with increase in inclination angle of the supporting columns, resulting in decrease of the period of the structural system. The participation of the stiffness of the tower in structural response of the cooling tower is fund to be dependent of the change in the inclination angle and even in the types of the supporting columns.

Air-side Performance of Aluminum Heat Exchangers at Different Inclination Angles (경사지게 설치된 평행류형 알루미늄 열교환기의 공기측 전열 성능)

  • Kim, Do-Young;Cho, Jin-Pyo;Kim, Nae-Hyun;Park, Nae-Hyun;Hwang, Jun-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.3
    • /
    • pp.181-188
    • /
    • 2008
  • The effect of inclination angle on the heat transfer and pressure drop characteristics of the brazed aluminum heat exchangers is experimentally investigated. Three samples having different fin pitches(1.25, 1.5 and 2.0 mm) were tested. Results show that heat transfer coefficient is not affected by the inclination angle. However, the friction factor increases as the inclination angle increases with negligible difference between the forward and backward inclination. Both the heat transfer coefficient and the friction factor are the smallest at $F_p=1.5mm$, followed by $F_p=2.0mm$ and 1.25mm. Possible explanation is provided considering the louver layout. Comparison with existing correlations is also made.

An Experimental Study on the Convective Boiling in Inclined Tubes (경사진 원형관내에서의 강제대류비등 열전달에 대한 실험적 연구)

  • 이홍욱;이준식;박군철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.674-681
    • /
    • 2001
  • An experiment is conducted to investigate the effect of the inclination angle on convective boiling heat transfer of a uniformly heated tube. The test section used is a stainless steel tube with10.7mm in inner diameter. The hating length is 3m and is heated directly by an AC current. The test fluid is R-113. Experiment are carried out with mass flow rates of 300, 500 and $700\;kg/m^{2}s$, and heat fluxes varying from 5 to 65 kW/$m^2$. The inclination angles of the tube are $0^{\circ},\;5^{\circ},\;11^{\circ}\;and\;25^{\circ}$. the circumferential temperature variation at low quality region and the location of dryout at high quality region are mainly observed. Circumferential anisothermality occurring at low mass flow rate and low quality conditions is gradually reduced with the increase in the inclination angle and finally disappears at the inclination angle of $25^{\circ}$. Critical quality where dryout is initiated is seriously influenced by the inclination angle. Wall temperature after critical quality is also affected by the inclination angle.

  • PDF

Comparison Researches for Installation of the Module Angles and Array Spacing on Photovoltaic Power System (태양광 발전시스템에서 모듈 설치 각도와 어레이 간격의 비교 연구)

  • Choi, Dong-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.162-168
    • /
    • 2009
  • This thesis is based on the research and experiment of the optimal efficiency generation of electric power. The research and experiment were conducted to search the optimal generation of electric power from a specific amount of solar energy from Photovoltaic Power System with a solar position tracker were used. The changes in the array angles and spacing of the PV Module were also taken into account as well. Here are the findings and the conclusions. First of all, based on experiment using the various anglers, the efficiency generation of electric power increased to a maximum of approximately $12{\sim}17$[%] more at the PV module inclination angle of 30[$^{\circ}$] than at the inclination angles of 20[$^{\circ}$] and 40[$^{\circ}$]. As a result, we have found that installing the PV module inclination at the angle of 30[$^{\circ}$] brought about the most efficient conversion effect of the Photovoltaic Power System. But, when the solar cell is installed on a roof or rooftop where snow builds up, it is the most appropriate to install the solar energy at an 35[$^{\circ}$] angle so that snow slides down and not build up on the module.

Experimental study on the influence of heating surface inclination angle on heat transfer and CHF performance for pool boiling

  • Wang, Chenglong;Li, Panxiao;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.;Deng, Jian
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.61-71
    • /
    • 2022
  • Pool boiling heat transfer is widely applied in nuclear engineering fields. The influence of heating surface orientation on the pool boiling heat transfer has received extensive attention. In this study, the heating surface with different roughness was adopted to conduct pool boiling experiments at different inclination angles. Based on the boiling curves and bubble images, the effects of inclination angle on the pool boiling heat transfer and critical heat flux were analyzed. When the inclination angle was bigger than 90°, the bubble size increased with the increase of inclination angle. Both the bubble departure frequency and critical heat flux decreased as the inclination angle increased. The existing theoretical models about pool boiling heat transfer and critical heat flux were compared. From the perspective of bubble agitation model and Hot/Dry spot model, the experimental phenomena could be explained reasonably. The enlargement of bubble not only could enhance the agitation of nearby liquid but also would cause the bubble to stay longer on the heating surface. Consequently, the effect of inclination angle on the pool boiling heat transfer was not conspicuous. With the increase of inclination angle, the rewetting of heating surface became much more difficult. It has negative effect on the critical heat flux. This work provides experimental data basis for heat transfer and CHF performance of pool boiling.

A Comparison of the Heat Transfer Performance of Thermosyphon Using a Straight Groove and a Helical Groove

  • Han Kyuil;Cho Dong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2296-2302
    • /
    • 2005
  • This study is focused on the comparison of heat transfer performance of two thermosyphons having 60 straight and helical internal grooves. Distilled water has been used as working fluid. Liquid fill charge ratio defined by the ratio of working fluid volume to total internal volume of thermosyphon, the inclination angle and operating temperature were used as experimental parameters. The heat flux and heat transfer coefficient are estimated from experimental results. The conclusions of this study may be summarized as follows; Liquid fill charge ratio, inclination angle and geometric shape of grooves were very important factors for the operation of thermosyphon. The optimum liquid fill charge ratio for the best heat flux were $30\%$. The heat transfer performance of helically grooved tube was higher than that of straight grooved tube in low inclination angle (less than $30^{\circ}$), but the results were opposite in high inclination angle (more than $30^{\circ}$). As far as optimum inclination angle concerns, range of $25^{\circ}\~30^{\circ}$ for a helically grooved tube and about $40^{\circ}$ for a straight grooved tube are suggested angles for the best results.

The Immediate Effects of Five-Toed Shoes on Foot Structure

  • Yi, Kyung-Ock
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.397-403
    • /
    • 2011
  • The purpose of this study is to analyze the immediate effects of five toed shoes on foot structure. Subjects consisted of 26 college-aged women with pes planus. X-ray analysis of student feet were performed both barefooted and with five toed shoes. Dependent variables were hallux valgus angle, calcaneal inclination angle, 1st metatarsal declination angle, and intermetartarsal angle. Independent t-test was used for statistical analysis along with SAS. Overall, there were statistically significant changes of test subject's dependent variables when wearing five toed shoes. Specifically, the hallux valgus angle decreased, the calcaneal inclination angle and 1st metatarsal inclination angle increased, and intermetatasal angles both increased and decreased, shifting towards normal range. In every case the dependent variables shifted towards a more normal range while subjects wore five toed shoes. This study only examined the immediate corrective effects of five toed shoes on foot structure, but long-term studies are needed to understand the prolonged effects of five toed shoes on foot structure.