• Title/Summary/Keyword: Inclination Angle

Search Result 756, Processing Time 0.025 seconds

A comparative study on the change of postoperative facial hard tissue profile after maxillary rotational surgery (하악전돌증 환자의 양악 수술 시 상악골 후상방 회전이동 여부에 따른 안면부 경조직 변화량에 대한 비교 연구)

  • Kim, Uk-Kyu;Lee, Sung-Tak;Kim, Tae-Hoon;Song, Jae-Min;Hwang, Dae-Seok;Chung, In-Kyo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.4
    • /
    • pp.264-271
    • /
    • 2011
  • Purpose: This study evaluated retrospectively the postsurgical facial hard tissue profile of a Le Fort I osteotomy with/without posterior impaction and rigid internal fixation to correct mandibular prognathism. After observing a difference between the two groups, this measurement was used to prepare a treatment plan for 2-jaw surgery. Patients and Methods: Thirty patients who had undergone orthognathic surgery in Pusan National University Dental Hospital were enrolled in this study. Fifteen patients were treated using a Le Fort I osteotomy with posterior impaction and mandibular setback bilateral sagittal split ramus osteotomy, and the other fifteen patients were treated without posterior impaction. The preoperative (T0), immediate postoperative (T1) and six-month follow-up period (T2) cephalograms were taken and difference between T1-T0 and T2-T2 was analyzed. Results: Both groups was FH-ABp, SNB and ANB showed significant changes in the measurement, whereas only the posterior impaction group showed a change in the SN-U1, occlusal plane, posterior facial height, surgical movement difference from the L1 and B-point. There was no significant statistical change between the immediate postoperative (T1) and six-month follow-up (T2) hard tissue analysis in the two groups. Conclusion: A Le Fort I osteotomy with posterior impaction is considerable for patients with a flat occlusal plane angle, large posterior facial height, prominent B-point, pogonion and labioversed incisal inclination if the indications are well chosen.

Total reference-free displacements for condition assessment of timber railroad bridges using tilt

  • Ozdagli, Ali I.;Gomez, Jose A.;Moreu, Fernando
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.549-562
    • /
    • 2017
  • The US railroad network carries 40% of the nation's total freight. Railroad bridges are the most critical part of the network infrastructure and, therefore, must be properly maintained for the operational safety. Railroad managers inspect bridges by measuring displacements under train crossing events to assess their structural condition and prioritize bridge management and safety decisions accordingly. The displacement of a railroad bridge under train crossings is one parameter of interest to railroad bridge owners, as it quantifies a bridge's ability to perform safely and addresses its serviceability. Railroad bridges with poor track conditions will have amplified displacements under heavy loads due to impacts between the wheels and rail joints. Under these circumstances, vehicle-track-bridge interactions could cause excessive bridge displacements, and hence, unsafe train crossings. If displacements during train crossings could be measured objectively, owners could repair or replace less safe bridges first. However, data on bridge displacements is difficult to collect in the field as a fixed point of reference is required for measurement. Accelerations can be used to estimate dynamic displacements, but to date, the pseudo-static displacements cannot be measured using reference-free sensors. This study proposes a method to estimate total transverse displacements of a railroad bridge under live train loads using acceleration and tilt data at the top of the exterior pile bent of a standard timber trestle, where train derailment due to excessive lateral movement is the main concern. Researchers used real bridge transverse displacement data under train traffic from varying bridge serviceability levels. This study explores the design of a new bridge deck-pier experimental model that simulates the vibrations of railroad bridges under traffic using a shake table for the input of train crossing data collected from the field into a laboratory model of a standard timber railroad pile bent. Reference-free sensors measured both the inclination angle and accelerations of the pile cap. Various readings are used to estimate the total displacements of the bridge using data filtering. The estimated displacements are then compared to the true responses of the model measured with displacement sensors. An average peak error of 10% and a root mean square error average of 5% resulted, concluding that this method can cost-effectively measure the total displacement of railroad bridges without a fixed reference.

Evaluation of Hydraulic Stability Using Real Scale Experimental on Porous Concrete Revetment Block (다공성콘크리트 호안블록의 실규모 실험을 통한 수리안정성 평가)

  • Kim, Bong-Kyun;Seo, Dae-Seuk;Park, Jun-Seok;Kim, Yun-Yung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.122-130
    • /
    • 2016
  • The past few decades of industrialization enabled human-centered stream developments, which in turn resulted in constructing straight or covered streams, which are used only for sewage disposal purpose. However, these types of streams have become the cause of flood damages such as localized heavy rain. In response, various construction methods have been implemented to prevent stream and embankment damages. However, regulations regarding these measures only lay out minimum standards such as the height of slopes and the minimum angle of inclination. Moreover, examination of tractive force, the most crucial factor in preventing flood damage, is nonexistent. Therefore, this study evaluates various tractive forces by implementing a porous concrete tetrapod at a full scale artificial stream for experiment, controlling the rate of inflow, and measuring the velocity and depth of the stream under different experiment conditions. The test results of the compressive strength, and porosity and density of rock of the porous concrete tetrapod was between 16.6 and 23.2 MPa, and the actual measurement of air void was 10.1%, thus satisfying domestic standard. The result of tractive force experiment showed a limiting tractive force of $47.202N/m^2$, not satisfying the tractive force scope of $67N/m^2$ the stream design working expertise proposes. However, there was neither damage nor loss of blocks and hardpan. Based on previous researches, it can be expected that there will be resistance against a stronger tractive force. Therefore, it is necessary to conduct another experiment on practical limiting tractive force by adjusting some experimental conditions.

Anthropometric Analysis of Frontal Sinus Using 3D CT in Koreans (한국인 성인 남녀에서 3차원 전산화단층촬영술을 이용한 전두동의 형태학적 연구)

  • Shim, Byung-Kwan;Kim, Jun-Hyuk;Shin, Ho-Seong;Lee, Young-Man
    • Archives of Plastic Surgery
    • /
    • v.38 no.5
    • /
    • pp.594-601
    • /
    • 2011
  • Purpose: The frontal sinuses are a pair of triangularly shaped, air-filled chambers lined by mucoperiosteum and located between the inner and outer tables of the frontal bone. Until recently, our understanding of gender variations in craniofacial anatomy has been chiefly built upon anthropometric studies, which typically employ facial surface measurements or plain film radiography. The aim of this study i to determine the sizes of the frontal sinus in both sexes in Koreans. Methods: 95 Korean subjects who underwent maxillofacial 3-Dimensional computed tomography (CT) between January 2009 and December 2009 were enrolled. Frontal sinus dimensions and forehead measurements were taken at midline and at 10, 20, and 30 mm to the left and right of midline using sagittal, coronal, and axial images. The data was analyzed for significant differences between measurements made at the selected points in the frontal sinus, for left to right variations, for gender variations, and for racial differences. Results: The mean thickness of the anterior table ranged from 2.31 to 3.23 mm. Mean anteroposterior depth of the frontal sinus ranged from 7.38 to 9.45 mm and did not vary significantly at any distance from midline. Frontal sinus height was greatest at midline (mean=29.24 mm) and progressively lessened at lateral distances. Mean total width at the level of the supraorbital ridge was 53.66 mm. For all measurements, no significant left to right variation was noted. Comparing the sexes, males were found to have greater dimensions in most frontal sinus measurements, though these differences were only found to be significant at or close to midline. The male forehead was marked by more acute nasofrontal angle ($133.3^{\circ}$ versus $141.6^{\circ}$) and a steeper posterior forehead inclination ($14.9^{\circ}$ versus $7.7^{\circ}$). Conclusion: Using CT imaging, forehead and frontal sinus dimensions have been described. Generally, males had larger overall frontal sinus dimensions. And Korean had similar sized frontal sinus to Caucasian in height and width. But in AP distance Korean had lesser measurement. The result of this study may be helpful in the comprehension of normal size of frontal sinus in Korean.

Construction Methodology for Chum-Sung-Dae Validation through the Present Configuration (첨성대 건립에 대한 시공방법론 첨성대의 얼개를 통한 논증)

  • Kim, Jang Hoon;Park, Sang Hun
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.2
    • /
    • pp.40-61
    • /
    • 2009
  • A new construction methodology has been proposed on a scientific basis to reason a rational explanation for the structure and the present configuration of Chum-Sung-Dae. This is because there is no way to otherwise explain the gap between our expectation that the people in Shilla are assumed to be and the problems, such as the use of a temporary supporting structure including falsework, the use of a conveying device for stonework and the practice of soil fill, raised when the construction method in nowadays is applied to the structure. Furthermore, it is because the questions, such as the difference of an azimuth angle between the southward opening and the square podium, the skewed circular plan in layers of the body, misalignment between neighboring layers of the body, disagreement between the inclination due to slight sidesway and the eccentricity in each layer of the circular body, perfectly aligned vertical and horizontal joints and the existence of soil fill, raised from the present configuration of Chum-Sung-Dae, also require a reasonable explanation based on scientific evidences, if any. Therefore, the proposed new construction methodology, in which the soil hill outside as well as the soil fill inside the Chum-Sung-Dae may have been utilized as a temporary scaffolding system for construction, is the highly probable one that the builders of Chum-Sung-Dae might have inevitably employed. The existence of great tombs, scattered in Hwang-Nam-Dong close to Chum-Sung-Dae, implies that the people of Shilla might have accepted the proposed new construction methodology as a natural one.

The effects of 8-week spinal stabilization exercise program on NDI, postural balance and body shape change in patients with chronic neck pain (8주간의 척추 안정화 운동 프로그램이 만성 경부통 환자의 NDI, 균형 능력 및 자세 변화에 미치는 영향)

  • Kim, Ju Eun;Ha, Sung;Kim, Won Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.43-51
    • /
    • 2020
  • This study examined how the eight-week spinal stabilization exercise program affects the cervical disability index, postural balance ability, and body shape change. The exercise program performed 60 minutes of spinal stabilization exercise three times a week for eight weeks. Sixteen patients with chronic neck pain, who complained of neck pain for six months, were classified into exercise group (n=8 patients) and control group (n=8 patients). The results before and after the eight-week exercise program were observed. Significant differences were observed in the time, group, and interaction of the neck disability index (p<.05). The balance ability showed significant interaction effects between the groups and periods (p<.05). Significant differences were noted in the timing and interaction in the pelvic inclination angle in posture change (p<.05), and there were significant differences in the group, timing, group, and interaction in the cervical and shoulder position angles (p<.05). The above results showed that the spinal stabilization exercise significantly improved the cervical disability index, balance ability change, and body shape change in patients with chronic neck pain. Future studies will analyze the specific changes in spinal structure through radiographic imaging to increase the validity of spinal stabilization exercise.

A Study on the Applicability of Air Launch Vehicle (공중발사체의 활용가능성 분석 연구)

  • Kwon, Kybeom;Lee, Kanghyun;Cho, Ye Rang;Ji, Wan Gu;Kim, Kyu Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.203-214
    • /
    • 2022
  • As the global demand for small satellites weighing less than 500 kg increases, the development and operation of dedicated small launch vehicles increase significantly. The responsiveness of a launch vehicle that puts a small satellite into a target orbit at the desired time is attracting attention. As a result, interest in the air launch is increasing in the rapid establishment of a constellation. As the demand for small satellites in south Korea increases, this study performed analyses on the applicability of an air launch vehicle using a large civil aircraft considering the geographical environment. In terms of responsiveness, mission response times were compared and analyzed for air launch vehicles and ground small and large vehicles. In addition, an air vehicle and a small ground vehicle were quantitatively compared and analyzed for the orbital insertion performance. As a result of the analysis, the air launch vehicle has limited responsiveness in Korea regarding rapid satellite constellation establishment. However, it can be an effective alternative for low inclination angle orbit insertion with the benefit of a fast turnaround time. Furthermore, the performance of the orbital injection is close to that of the ground small launch vehicle, and the high efficiency in terms of the required propellant mass is possible, so air launch can be an effective launch means for putting small satellites into orbit in Korea.

A Parametric Study for Jointed Rock Slope Using FEM (절리 암반사면에서의 인자효과에 의한 유한요소 해석의 타당성 검토)

  • Lee, Jin-A;Chung, Chang-Hee;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.97-102
    • /
    • 2007
  • Though the stability analysis of soil slopes widely employs the limit equilibrium method, the study on the jointed rock slopes must consider the direction of joint and the characteristics of Joint at the same time. This study analyzes the result of the change in the factors which show the characteristics of discontinuity and the shape factor of rock slopes, and so on, in an attempt to validate the propriety as to the interpretation of jointed rock slope stability which uses the general finite element program. First, the difference depending on the flow rules was compared, and the factor effect study was conducted. The selected independent variables included the direction of joint which displays the mechanical characteristics of discontinuity, adhesive cohesion, friction angle, the inclination and height of rock slope which reveal the shape of slope and surcharge load. And the horizontal displacement was numerically interpreted at the 1/3 point below the slope, a dependent variable, to compare the relative degree of factor effects. The findings of study on factor effects led to the validation that the result of horizontal displacement for each factor satisfied various engineering characteristics, making it possible to be applied to stability interpretation of jointed rock slope. A modelling is possible, which considers the application of the result of real geotechnical surveys & laboratory studies and the non-linear characteristics when designing the rock slope. In addition, the stress change which may result from the natural disaster, such as precipitation, and the construction, can be expressed. Furthermore, as the complicated rock condition and the ground supporting effect can be considered through FEM, it is considered to be very useful in making an engineering decision on the cut-slope, reinforcement and so on.

Customized maxillary incisor position relative to dentoskeletal and soft tissue patterns in Chinese women: A retrospective study

  • Zhou, Xueman;Zheng, Yingcheng;Zhang, Zhenzhen;Zhang, Zihan;Wu, Lina;Liu, Jiaqi;Yang, Wenke;Wang, Jun
    • The korean journal of orthodontics
    • /
    • v.52 no.2
    • /
    • pp.150-160
    • /
    • 2022
  • Objective: To provide reliable prediction models based on dentoskeletal and soft tissue variables for customizing maxillary incisor positions and to optimize digitalized orthodontic treatment planning. Methods: This study included 244 Chinese women (age, 18-40 years old) with esthetic profiles after orthodontic treatment with fixed appliances (133 in group I: 1° ≤ The angle between the nasion [N]-A point [A] plane and the N-B point [B] plane [ANB] ≤ 4°; 111 in group II: 4° < ANB ≤ 7°). Dental, skeletal, and soft tissue measurements were performed on lateral cephalograms of the participants. Correlation and multiple linear regression analyses were used to determine the influence of dentoskeletal and soft tissue variables on maxillary incisor position. Results: The ideal anteroposterior position of the maxillary incisor varied between sagittal skeletal patterns. The position of the maxillary incisor correlated with the sagittal discrepancy between the maxilla and the mandible (ANB), protrusion of the midface, nasal tip projection, development of the chin, and inclination of both the maxillary and mandibular incisors. Distance from the maxillary central incisor to nasion-pogonion plane predicted using multiple linear regression analysis was accurate and could be a practical measurement in orthodontic treatment planning. Conclusions: Instead of using an average value or norm, orthodontists should customize a patient's ideal maxillary incisor position using dentoskeletal and soft tissue evaluations.

Minimum area for circular isolated footings with eccentric column taking into account that the surface in contact with the ground works partially in compression

  • Inocencio Luevanos-Soto;Arnulfo Luevanos-Rojas;Victor Manuel Moreno-Landeros;Griselda Santiago-Hurtado
    • Coupled systems mechanics
    • /
    • v.13 no.3
    • /
    • pp.201-217
    • /
    • 2024
  • This study aims to develop a new model to obtain the minimum area in circular isolated footings with eccentric column taking into account that the surface in contact with the ground works partially in compression, i.e., a part of the contact area of the footing is subject to compression and the other there is no pressure (pressure zero). The new model is formulated from a mathematical approach based on a minimum area, and it is developed by integration to obtain the axial load "P", moment around the X axis "Mx" and moment around the Y axis "My" in function of σmax (available allowable soil pressure) R (radius of the circular footing), α (angle of inclination where the resultant moment appears), y0 (distance from the center of the footing to the neutral axis measured on the axis where the resultant moment appears). The normal practice in structural engineering is to use the trial and error procedure to obtain the radius and area of the circular footing, and other engineers determine the radius and area of circular footing under biaxial bending supported on elastic soils, but considering a concentric column and the contact area with the ground works completely in compression. Three numerical problems are given to determine the lowest area for circular footings under biaxial bending. Example 1: Column concentric. Example 2: Column eccentric in the direction of the X axis to 1.50 m. Example 3: Column eccentric in the direction of the X axis to 1.50 m and in the direction of the Y axis to 1.50 m. The new model shows a great saving compared to the current model of 44.27% in Example 1, 50.90% in Example 2, 65.04% in Example 3. In this way, the new minimum area model for circular footings will be of great help to engineers when the column is located on the center or edge of the footing.