• Title/Summary/Keyword: Inclination Angle

Search Result 756, Processing Time 0.025 seconds

Environmental and Ecological Characteristics Distribution of Natural Growth Region in Rhododendron Brachycarpum (만병초 자생지의 환경생태학적 특성)

  • Lee, Byung-Chul;Shim, Ie-Sung
    • Journal of Environmental Science International
    • /
    • v.20 no.10
    • /
    • pp.1319-1328
    • /
    • 2011
  • Rhododendron brachycarpum is a evergreen broad-leaved shrub and belongs to the Ericaceae family and the Rhododendron genus. It is well known for its beautiful leaves and flowers. There are 11 species of the Rhododendron genus in Korea. It includes 3 species - Rhododendron brachycarpum, Rhododendron aureum Georgi and Rhododendron brachycarpum var. roseum Koidz. They grow naturally over 1,000 meters above sea level of the Baekdu Mountain Range in Korea. These habitats, according to investigations of 9 Rhododendron brachycarpum natural habitats, are mostly located on the slope of mountains facing north at an altitude of 1,200 m to 1,526 m above sea level with angle of inclination from 30 degrees to 45 degrees. Based on the result of vegetation analysis of dominance species in the quadrates, there are Quercus aliena, Quercus mongolica Fisch. ex Ledeb, Abies holophylla in species of upper trees, and so on. Dominant species of woody plants in tree layer are Quercus aliena, Quercus mongolica Fisch. ex Ledeb, Abies holophylla, Betula platyphylla and Veeatrum patulum Loes. fil, Erythronium japonicum, Dryopteris crassirhizoma, Paeonia japonica var. glabra Makino are founded in herbaceous plants. And we can see another result of the investigation that the flowering rates of the plants with the buds are highly ranked mountains such as Mt. Hambaek 68%, Mt. Gyebang 40%, Mt. Yagksu 9%, Mt. Gaein 7% and Mt. Seolag 0%. The results show that there are 24 over 15-year-old Rhododendron brachycarpums in Mt. Odae and are 56 under 15-year-old trees in Mt. Hambaek and are no trees in Mt. Gyebang and are 9 over 30-year-dead trees only in Mt. Taebaeg. Out of found trees, the highest tree is 7 m in height and 0.6 m in diameter. Also this result shows what are the vulnerability factors of the natural habitats. They are as follows: indiscriminate trails in mountains, damages by mountain climbers, uncareful plant collecting, the fierce competitions with other plants such as Acer pseudosieboldianum var. ishidoyanum Uyeki, Quercus aliena, Celastrus orbiculatus and damages by disease and insect, unusual temperature in natural habitats, etc. Rhododendron brachycarpums have high ornamental value and excellent pharmaceutical effect. But the areas of its habitats decrease dramatically. So we need measures to protect and their natural habitats. It is necessary that we conductfurther investigations to designate conservation area for Rhododendron brachycarpums.

A Blind Design of Sunlighting Using Total Reflection (전반사를 이용한 자연채광 블라인드 디자인)

  • Sim, Choong-Gyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.39-44
    • /
    • 2012
  • The new blind design of sunlighting has been suggested in this study. The material in this blind becomes transparent but the blind has the parabolic edge section having the perpendicular line on a side. The material of this blind is PolyMethly MethAcrylate(PMMA). In this parabolic edge section, the front side of the blind is designed perpendicular to the ground. But the back side is a little tilted to the front side. The rays of reflected sun at the front side can be easily reflected totally by the back side. If the inclination angle in this parabolic edge section at the back side is designed with $15^{\circ}$, it can transmit the rays of sun when the height of the sun is lower than $45^{\circ}$. But it can reflect the rays of sun when the height of the sun is upper than $45^{\circ}$. The suggested design of blind can be applied to the existing blind installation. Although the material in this blind becomes transparent, the rays of sun can be reflected totally at midday. There is also prospect outside of the blind because the material becomes transparent. Several inclination angles in the suggested design have been simulated for the various height of sun. Total reflections have been occurred by the suggested blind design at midday and it can be useful to shut out the sunlight.

Optimum Reinforcement Conditions of Large Diameter Reinforcement for Steep Slope of Conventional Railway Embankment under Train Loading (기존선 성토사면 급구배화를 위한 열차 하중 하 대구경 봉상보강재의 최적 보강조건)

  • Kwak, Chang-Won;Kim, Dae-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.43-50
    • /
    • 2016
  • A reinforcement is required to ensure the structural safety in case of railway embankment excavation under railway load. A large diameter soil nailing with concrete wall is applied as the reinforcement method instead of the conventional soil nailing system. In this study, a series of 3 dimensional numerical analyses are performed to investigate the optimum reinforcement considering 15 different conditions based on the length, lateral spacing, diameter, and inclination of the reinforcement. The interface between soil nail and perimetric grout is considered by means of cohesion, stiffness and perimeter of the grout. 0.3 m of reinforcement diameter is assessed as the most appropriate based on the economical viewpoint though ground displacement decreases with the increase of diameter, however the difference of displacement is negligible between 0.4 m and 0.3 m of diameter. Surface settlement, lateral displacement of wall, and stress of reinforcement are calculated and economic viewpoint to reinforce embankment considered. Consequently, the optimum reinforcement conditions considering those factors are evaluated as 3 m in length, 0.3 m in diameter, 1.5 m in lateral spacing, and 10 degree of inclination angle in the case of 3 m of excavation depth. Additionally, inclined potential failure surface occurs with approximately 60 degrees from the end of nails and the surface settlement and wall lateral displacement are restrained successfully by the large diameter soil nailing, based on the result of shear strain rate.

Flow Characteristics and Wind Loads on the Solar Panel and Floating System of Floating Solar Generato (부유식 태양광 발전기의 패널과 부유체에 작용하는 풍하중과 유동특성)

  • Ryu, Dae-Gyeom;Lee, Kye-Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.229-235
    • /
    • 2019
  • A floating photovoltaic generation system is a new concept that combines existing photovoltaic generation technology with floating technology. This is installed in the water not on conventional land and a building. The system is designed as a unit module type that can be connected to other modules according to the power generation capacity, thereby forming a large-scale power generation facility. As a renewable energy source, it is composed of a floating structure, mooring device, photovoltaic power generation facility, and underwater cable. Because this system is installed outdoors, the effect of the wind load on the structure is very large. In this study, the wind loads most affected on the floating photovoltaic generation structure were obtained by computational fluid dynamic analysis. The flow characteristics and wind loads were analyzed for a range of wind orientations and angles of inclination. The analysis showed the position and magnitude of the maximum wind load to the wind direction and the flow characteristics around the solar panel and floating system. The wind load increased with increasing angle of inclination of the panel to the ground.

Clinical Convergence Angle of Prepared Tooth for full Veneer Crowns (전부 피개관의 치아 형성 시 축면 경사각에 대한 조사)

  • Kim, Sung-Jin;Pae, Ah-Ran;Woo, Yi-Hyung;Kim, Hyeong-Seob
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.1
    • /
    • pp.21-32
    • /
    • 2010
  • The convergence angle of a prepared tooth is a very important factor in the retention and resistance of a crown restoration. But various intraoral environments and clinician's techniques make it difficult to obtain the ideal inclination. Therefore, in this study, clinical convergence angle of a prepared tooth was investigated. The data was collected from the patient models of prosthodontic residents and the patient models of general practitioners. The images of mesiodistal and buccolingual surfaces were taken with a digital camera to evaluate the convergence angle on 'ImageJ' program. The images were classified according to the criteria (1. Clinician group, 2. Position in the dental arch, 3. The purpose of abutment preparation)and then analyzed. The mean convergence angle of a prepared tooth for Korean clinicians was $15.02^{\circ}$ (${\pm}10.13^{\circ}$). 1. It was significant in the convergence angle between the general practitioner group and the prosthodontic resident group(p<0.05). 2. It was significant between the mesiodistal and buccolingual surface in the the prosthodontic resident group(p<0.05). 3. For the general practitioner group, it was significant when anteriors and premolars were compared with molars(p<0.05). For the prosthodontic resident group, it was significant when anteriors and premolars were compared with molars (p<0.05). 4. When divided into upper and lower arches, for the general practitioner group, it showed significant difference in the buccolingual aspect(p<0.05). Also in the prosthodontic resident group, it showed significant difference in the buccolingual aspect(p<0.05). 5. Dividing left and right sides of the arches, there was no significant difference in the general practitioner group and the prosthodontic resident group(p>0.05). 6. In the general practitioner group, it was significant in the mesiodistal axial convergence angle of single crown abutment and 3 unit bridge abutment(p<0.05). In the prosthodontic resident group, it was significant in the mesiodistal and overall axial convergence angle of single crown abutment and 3 unit bridge abutment(p<0.05). Clinical convergence angle of prepared tooth in Korea was included in agreement with other studies investigating convergence angle that ranged from 10 to 22 degrees, achieved in clinical practice.

The compensatory adaptation of anterior teeth according to the skeletal relation (악골관계에 따른 전치부교합의 보상적 적응에 관한 연구)

  • Oh, Chang-Keun;Yoon, Young-Jooh;Kim, Kwang-Won
    • The korean journal of orthodontics
    • /
    • v.30 no.2 s.79
    • /
    • pp.175-183
    • /
    • 2000
  • The purpose of this study was to identify the compensatory adaptation of dentoalveolar structure according to the various skeletal relation through the statistical correlation between the anteroposterior, vertical skeletal and dentoalveolar relation. For this study, the sample were consisted of 101 adult subjects (51male and 50 female, mean age; male 23.6 years, female 21.5 years) who had good occlusion with the range of normal overjet and overbite and acceptable Angle's class I molar relationship which had not been related orthodontically The results were as follows : 1. Even though acceptable normal occlusion, the range of measurements which represent anteroposterior, vertical skeletal relation and dentoalveolar relation were very wide. 2. Upper and lower incisor axis were significantly correlated with anteroposterior skeletal relation, which means the mote lingual inclination of upper anterior teeth and the more labial inclination of lower anterior teeth according to the more anterior position of mandible to the maxilla (P<0.01). 3. Upper and 1ower anterior alveolar bone height was statistically correlated with the lower anterior vertical skeletal height. 4. Upper and 1ower alveolar bone height were not correlated with anteroposterior skeletal relation (P>0.05). 5. The correlation between the incisor axis and vertical skeletal was more closely related in upper anterior teeth than the lower anterior teeth. To summarize the above results, even though acceptable normal occlusion, skeletal and dentoalveolar relation was very widely ranged, and there were close relationship between the anteroposterior skeletal relation and the inclination of upper and lower anterior teeth and between the vertical skeletal relation and upper and lower anterior alveolar bone height. These finding can be concluded as compensatory adaptation to the different skeletal relationship.

  • PDF

An Experimental Study on the Thermal Characteristics of Hybrid Solar Receiver for Dish/Stirling System (Dish/Stirling 시스템 적용을 위한 Hybrid 태양열 흡수기의 열특성에 관한 실험 연구)

  • Kang, Myeong-Cheol;Kim, Jin-Soo;Kang, Yong-Heack;Kim, Nack-Joo;Yoo, Seong-Yeon;Kim, Jin-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.7-13
    • /
    • 2007
  • A Dish type solar concentrating system consists of a parabolic concentrator and a cavity receiver. In order to achieve high temperatures from solar energy, it is essential to efficiently reflect the solar rays in the concentrator and to minimize thermal losses in the cavity receiver. Improving the economical efficiency of a solar power system required the stirling unit to be operated continuously. For continuous operation of the stilting unit, the receiver must be continuously provided with thermal energy from solar as well as additional combustion heat. It is possible for a hybrid solar receiver system equipped with an additional combustion to be operated 24 hrs/day. A hybrid solar receiver was designed and manufactured for a total thermal load of 35 kW in the operating temperature range $700^{\circ}C$ to $800^{\circ}C$. The hybrid receiver system was tested in gas-only mode by gas-fired heat to investigate thermal characteristics at inclination angle varying from 0 deg to 30 deg(cavity facing down) and the aperture to cavity diameter ratios of 0(closed cavity) and 1.0(open cavity). This paper has been conducted to measure temperature distribution in cavity surface and to analyze thermal resistances, and the evaporation and condensation heat transfer coefficient in all cases(open and closed cavity).

Study on Numerical Analysis of Estimating Elastic Modulus in Rockmass with a Consideration of Rock and Joint Characteristcs (암석 및 절리특성을 고려한 암반의 탄성계수 추정에 관한 수치해석적 연구)

  • Son, Moorak;Lee, Wonki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.229-239
    • /
    • 2013
  • Elastic modulus in rockmass is an important factor to represent the characteristic of rock deformation and is frequently used to estimate the displacement induced due to tunnel excavation or other activities in rockmass. Nevertheless, the study to estimate the elastic modulus, which considers the rock type and joint characteristics (joint shear strength and joint inclination angle), has been done in less frequency. Accordingly, this study is aimed at estimating of elastic modulus in jointed rockmass. For this purpose, numerical parametric studies have been carried out with a consideration of rock and joint conditions. Tunnel displacement results have been used to estimate the elastic modulus of jointed rockmass using the elastic theory of circular tunnel. From this study, the results would be expected to have a great practical use for estimating the displacement induced due to tunnel excavation or other activities in jointed rockmass.

Effect of Joint on the Earth Pressure Against an Excavation Wall in Rockmass (암반지층 굴착벽체에 작용하는 토압에 대한 절리의 영향)

  • Son, Moorak;Adedokun, Solomon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.505-513
    • /
    • 2014
  • This paper investigated the effect of joint on the earth pressure against an excavation wall in rockmass with the consideration of various rock and joint conditions. For this purpose, this study briefly reviewed of the previous earth pressure studies, and then numerical parametric studies were conducted based on the Discrete Element Method (DEM) to overcome the limitations of the previous studies. The numerical tests were carried out with the controlled parameters including rock types and joint conditions (joint shear strength, joint inclination angle, and joint set), and the magnitude and distribution characteristics of the induced earth pressure were investigated considering the interactions between the ground and the excavation wall. In addition, the earth pressures induced in rock stratum were compared with Peck's earth pressure for soil ground. The results showed that the earth pressure against an excavation wall in jointed rockmass were highly affected by different rock and joint conditions and thus different from Peck's empirical earth pressure for soil ground.

Effect of Step-Wise Excavation Depth on the Earth Pressure against an Excavation Wall in Rock Mass (암반지층 굴착벽체 발생토압에 대한 단계별 굴착깊이의 영향)

  • Son, Moorak;Adedokun, Solomon
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.2
    • /
    • pp.43-52
    • /
    • 2014
  • This paper examined the effect of step-wise excavation depth on the earth pressure against an excavation wall in rock mass. Numerical parametric studies were conducted based on the Discrete Element Method (DEM) to carry out the problems in rock mass. Controlled parameters included step-wise excavation depth, rock types, and joint conditions (joint shear strength and joint inclination angle). The magnitude and distribution characteristics of the induced earth pressure in a jointed rock mass were investigated and compared with Peck's earth pressure for soil ground. The results showed that the earth pressure against an excavation wall in rock mass were highly affected by different rock and joint conditions, and the effect of step-wise excavation depth increased as a rock type is deteriorated more. In addition, it was found that the earth pressure against an excavation wall in rock mass might be considerably different from Peck's empirical earth pressure for soil ground.