• Title/Summary/Keyword: Incinerator

Search Result 373, Processing Time 0.028 seconds

Removal Efficiencies Estimation of Air Pollutants at Wet Scrubber Using Activated Carbon (활성탄 사용에 따른 습식세정시설에서의 대기오염물질 제거효율 평가)

  • 신찬기;권명희;전종주;신대윤
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.2
    • /
    • pp.87-93
    • /
    • 2003
  • This study carried out to recommend adaptable technologies and countermeasures for performance improvement of Wet Scrubber(WS) in industrial waste incinerator. When not using the Activated Carbon(AC), the removal efficiency of dust and HCl is 73%, 92%. And particulate phase and gaseous phase dioxins removal efficiency was evaluated up to 31% and 12%. In this case, dioxins enrichment was not revealed in WS. When using the AC mixing with scrubbing water, the case of 1,000ppm, removal efficiency of particulate phase dioxins was about 51%, and gaseous phase dioxins was about 96%. The case of 2,000ppm, removal efficiency of particulate phase dioxins was about 55%, and gaseous phase dioxins was about 97%. And the case of 3,500ppm, the removal efficiency of particulate phase dioxins was about 35%, and gaseous phase dioxins was about 96% respectively. By this study, using the AC was more useful to remove the gaseous phase dioxins, and needed to use proper concentration of the AC, that in case of 3,500ppm, the particulate phase dioxins removal efficiency was more lower than other cases.

Thermal Behavior of the Nuclear Graphite Waste Generated from the Decommissioning of the Nuclear Research Reactor (연구로 해체시 발생되는 흑연폐기물의 열적 거동)

  • 양희철;은희철;이동규;조용준;강영애;이근우;오원진
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.105-114
    • /
    • 2004
  • This study investigated the thermal behavior of the nuclear graphite waste generated from the decommissioning of the Korean nuclear research reactor, The first part study investigated the decomposition rate of the nuclear graphite waste up to $1000^{\circ}C$ under various oxygen partial pressures using a thermo-gravimetric analyzer (TGA). Tested graphite waste sample not easily destroyed in the oxygen-deficient condition. However, the gas-solid oxidation reaction was found to be very effective in the presence of oxygen. No significant amount of the product of incomplete combustion was formed even in the limited oxygen concentration of 4% $O_2$. The influence of temperature and oxygen partial pressure was evaluated by the theoretical model analysis of the thermo-gravimetric data. The activation energy and the reaction order of graphite oxidation were evaluated as 128 kJ/mole and 1.1, respectively. The second part of this study investigated the behavior of radioactive elements under graphite oxidation atmosphere using thermodynamic equilibrium model. $^{22}Na$, $^{134}Cs$ and $^{137}Cs$ were found be the semi-volatile elements. Since volatile uranium species can be formulated at high temperatures above $1050^{\circ}C$, the temperature of incinerator furnace should be minimized. Other corrosion/activation products, fission products and uranium were found to be the non-volatile species.

  • PDF

Cooling Characteristics on the Forced Convection of an Array of Electronic Components in Channel Flow (I) - The Effect of H/B (without the Heat Sink) - (채널 유동장 내에 배열된 전자부품의 강제대류 냉각 특성에 관한 연구(I) -채널과 발열부품의 높이 비(H/B)의 영향(히트싱크가 부착되지 않은 경우)-)

  • Kim, Kwang-Soo;Yang, Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.73-80
    • /
    • 2006
  • Present study is concerned with an experimental study on the cooling characteristics of heat-generating components arranged in channels which are made by printed circuit boards. To assess the thermal performance of the heat-generating components arranged by $5\times11$ in flow channel, three variables are used: the velocity of the fluid at the entrance, the height of channel, and row number of the component. The cooling characteristics of the heat-generating components such as the surface temperature rise, the adiabatic temperature rise, the adiabatic heat transfer coefficient, and the effect of thermal wake are compared with the result of the experiment and the numerical analysis. Based on the experiment analysis, some conclusions can be drawn: First of all, the experiment and numerical analysis are identical comparatively; the heat transfer coefficient increases as H/B decreases. Howeve., when H/B is over 7.2, the effect of H/B is rather trivial. The effect is the biggest at the first component from the entrance, and it decreases until the fully developed flow, where it becomes very consistent. The thermal wake function calculated for each row decreases as H/B increases.

The Most Suitable Plan of Automatic Domestic Solid Waste Collection System for Land Development Area (택지개발지구의 쓰레기자동집하시설 최적규모 연구)

  • Lee, Joon-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.1
    • /
    • pp.28-34
    • /
    • 2009
  • The objective of this study was to draw the most suitable plan of an automatic domestic solid waste collection system for land development area. The results of this study indicated that the most suitable plan is identified as a land development area larger than 3,600,000 $m^2$ located in the metropolitan area with an incinerator system (or MBT). There are the cases smaller than the standard area but this may cause additional allotment from the residents. According to a rating method to compute the size of the most suitable plan, installation of an automatic clean network has to be minimized if the rated score is below 2.0. On the other hand, the installation is required if the rated score is above 2.5. For a certain circumstance, a cautious decision has to be made for installation of the automatic domestic solid waste collection system by considering the influence of the initial cost, sale price, residential allotment, and maintenance cost on the land development.

Discussion on the Practical Use of CFD for Grate Type Waste Incinerators (회격자식 소각로의 열유동 해석과 결과 분석에 대한 고찰)

  • Ryu C.;Choi S.
    • Journal of computational fluids engineering
    • /
    • v.7 no.3
    • /
    • pp.17-26
    • /
    • 2002
  • Computational fluid dynamic(CFD) analysis has been frequently applied to the waste incinerators to understand the flow performance for various design and operating parameters. Since the computational modeling inevitably requires many simplifications and complicated sub-models, validity of the results should be carefully evaluated. In this study, major computational modeling and procedure of usual simulation methods for the grate-type waste incinerators were assessed. Usual simulation method does not explicitly incorporate the waste combustion, simply by assuming the combustion gas properties from the waste bed which is treated as an inlet plane. However, effect of this arbitrary assumption on the overall flow pattern is not significant, since the flow pattern is dominated by strong pattern of jet flows of the secondary air. Thus, this method is valid in understanding the effect of flow-related parameters. In analyzing the results, deriving conclusive information directly from temperature and chemical species concentration should be avoided, since the model prediction for the gaseous reaction and the radiation reveals significant discrepancies against the actual phenomena. Use of quantitative measures such as residence time is very efficient in evaluating the flow performance.

Characterization of Toxic Pollutants in Ash and Flue Gas from Gasification Incinerator of Waste Tires (폐타이어 건류 소각에서 발생되는 재와 배기 가스에서의 독성 오염 물질의 정량)

  • Koo, Ja Kong;Seo, Young Hwa;Kim, Seok Wan;Yoo, Dong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.213-220
    • /
    • 1993
  • The problem of disposing of huge quantities of used tires is of growing concern to every country. As an economical solid waste management, a gasification followed by incineration process was applied to scrap tires to recover heat and to reduce waste volume for final landfill disposal. The gasification temperature, combustible and non-combustible gasified products and possibly produced air pollutants were predicted by changing equivalent mole ratios of carbon to oxygen by a chemical equilibrium model. For a risk assessment of ash toxic pollutants including heavy metals and toxic organics were thoroughly analyzed. Gasification bottom ash contained much more toxic organic compounds than fly ash, whereas fly ash contained higher concentration of heavy metals such as Pb and Cd. Pretreatment or secure landfill technology is suggested for a safe management of ash produced from the gasification incinerators.

  • PDF

Effect of Swirling Flow by Normal Injection of Secondary Air on the Gas Residence Time and Mixing Characteristics in a Lab-Scale Cold Model Combustor

  • Shin, D.;Park, S.;Jeon, B.;Yu, T.;Hwang, J.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2284-2291
    • /
    • 2006
  • The present study investigates gas residence time and mixing characteristics for various swirl numbers generated by injection of secondary air into a lab-scale cylindrical combustor. Fine dust particles and butane gas were injected into the test chamber to study the gas residence time and mixing characteristics, respectively. The mixing characteristics were evaluated by standard deviation value of trace gas concentration at different measurement points. The measurement points were located 25 mm above the secondary air injection position. The trace gas concentration was detected by a gas analyzer. The gas residence time was estimated by measuring the temporal pressure difference across a filter media where the particles were captured. The swirl number of 20 for secondary air injection angle of 5$^{\circ}$ gave the best condition: long gas residence time and good mixing performance. Numerical calculations were also carried out to study the physical meanings of the experimental results, which showed good agreement with numerical results.

A Study on the Phosphorus Resources Recovery using the MAP + PACI (Ca과 응집제를 보완한 MAP법을 이용한 폐수로부터의 인 자원 회수에 관한 연구)

  • Kim, Dong-Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.273-278
    • /
    • 2007
  • Modern society has moved from a phosphorus recycling loop, where animal manure and human wastes were spread on farming land to recycle nutrients, to a once-through system, where phosphates are extracted from mined, non-renewable phosphate rock and end up either in landfill(sewage sludge, incinerator ash) or in surface waters. In this research, crystallization of nitrogen and phosphate with natural sources of $Mg^{2+}$ in synthetic water was tested. The operational parameters of pH, mixing time, and the magnesium molar ratio were investigated to find optimal conditions of the MAP precipitation using synthetic wastewater. The removal efficiency of phosphate increased with pH up to 11. By MAP precipitaiton of the synthetic waste water, 94% of the phosphate were eliminated at pH 11. It was found that at least 10 minutes mixing time was required and 20 minutes mixing time was recommended for efficient phosphate removal. High efficiency removal of phosphate was possible when the magnesium molar ratio was 1.0~2.0. The comparative study of different magnesium sources showed that coagulants (PAC) was the more efficient sources than only magnesium. The result showed that 97% of phosphate removal. In conclusion, coagulants (PAC) induced crystallization of struvite and hydroxyapatite was shown to be a technically viable process that could prove cost effective for removing phosphate in wastewater.

Gas Reaction Characteristics of Waste Oyster Shell Sorbent

  • Jung, Jong-Hyeon;Shon, Byung-Hyun;Kim, Hyun-Gyu;Yoo, Kyung-Seun;Choung, Young-Hean;Choi, Suck-Gyu;Kim, Young-Sik
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.365-370
    • /
    • 2005
  • The objective of this study is to develop the sorbent of oyster shell, which can remove gaseous acid pollutants emitted from the incinerator and power plants. The physicochemical properties of prepared absorbents have been measured using ICP and BET Also, this study is to investigate the Hydration/calcination reaction in the fixed bed reactor. Thus, the results could be summarized as follows. Oyster shell can be used in powder type without former processing. It should be also noted that sulfation reactivity of oyster sample increases to about 5 times by calcination/hydration reaction due to the increase of specific surface area and pore volume. From these experiments, we have found that both $SO_2$ and $NO_x$ in simulated flue gas can be effectively removed by use of oyster absorbent.

  • PDF

Estimation of air pollutants generated in the industrial-waste incinerator using Aspen plus (Aspen plus를 이용한 산업폐기물 소각공정시 발생 오염물질 예측)

  • Lee, Ju-Ho;Jung, Moon-Hun;Kwon, Young-Hyun;Kim, Min-Choul;Lee, Jae-Jeong;Lee, Gang-Woo;Shon, Byung-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.1046-1049
    • /
    • 2009
  • 최근 화석에너지 고갈 문제와 폐기물의 지속적인 발생량 증가로 인해 폐기물을 이용한 열에너지 회수가 이슈화 되고 있다. 폐기물처리를 통한 에너지 회수 공정 가운데 소각이 가장 많이 이용되고 있으나 소각시 발생하는 대기오염 물질을 처리하기 위한 설계 및 설치비용에 많이 소요 된다. 본 연구에서는 화학공정 모사기인 Aspen plus를 이용해 소각공정 및 배가스 처리 공정모사를 실시하였다. 폐기물 소각 공정으로는 1 2차 연소실과 NO2를 환원하는 SNCR공정, 산성가스(HCl, SO2)를 제거하는 SDA공정, 입자상 물질을 처리 하는 bag filter공정을 모사하였다. 공정모사 결과 실제 산업폐기물 소각로의 처리효율과 일치 하였고 이를 바탕으로 동일한 공정 및 조건하에 소각로에 투입되는 폐기물의 조성비를 달리하여 공정 모사한 결과 오염물질의 배출량을 예측할 수 있었다. 이러한 오염물질 발생량 예측은 소각장의 폐기물 투입이 일정하지 않을 경우 조업 조건의 변경에 도움 뿐만아니라 공정개선의 효과적일 것으로 판단된다.

  • PDF