• Title/Summary/Keyword: Incineration plant

Search Result 106, Processing Time 0.042 seconds

A Study on Increasing the Energy Recovery from Waste at Incheon Metropolitan City according to Landfill Tax Introduction (폐기물부담금제 도입에 따른 인천시 폐기물의 에너지화 제고방안 연구)

  • Lim, Jiyoung;Kim, Jinhan;Park, Junghwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.2
    • /
    • pp.21-27
    • /
    • 2015
  • An introduction of landfill tax has been recently in issue in order to raise the financial resource for establishing waste resource-circulation society. The objectives of this study are to evaluate the plan of increasing energy recovery from waste at Incheon Metropolitan City, and to propose several points to be considered in terms of introducing the landfill tax. There are a lot of problems that impede energy recovery from waste at Incheon Metropolitan City, such as high-calorific waste from decrease of food waste to the municipal incineration plant, metals and batteries in the standard plastic garbage bag, etc. Alternative policies to solve these major problems have been drawn.

A Study on the solid waste of Buk Han Mt National Park (북한산 국립공원의 고형 폐기물에 관한 연구)

  • 도갑수;장일영;김광진
    • Journal of the Korean Professional Engineers Association
    • /
    • v.19 no.1
    • /
    • pp.12-24
    • /
    • 1986
  • The number of visiters to Bukhan Mt. national park, generation quantity of solid waste and collection system were researched to consider a counterplan for the pollution control of the national park and study for developing the effective treatment of solid waste was tried through the proximate analysis of each component containing. Results obtained in this study were summerized as follows; The great part of visitors go on an excursion to the Bukhan Mt. national park during July and August and also, the solid waste was generated nearly a half of the total amount at the same period. The major collection facilities in the national park were waste basket and incineration box. But the incineration box was too large in volume and very far in distance, and its collection period was irregular, so it was cause to the congestion of solid waste and bad smell and dirty. Therefore, to complete collection of solid waste, we must set up the waste basket which able to find within 40~50m from the origination place of solid waste and induce the visitors to throw the solid waste. It was obtained as moisture content: 48.5 wt%, volatile solid: 28.4wt%, fixed solid: 23.1 wt%, lower heating value: 1,320kca1/kg from experimental analysis of solid waste. According to this analysis, the incineration operation is possible, but the generation quantity of solid waste was too small to construct incineration plant for heat recovery. It was found that it is suitable for the aerobic composting by mixing with the night soil which generate in the national park after the recovery of resources such as metals, glasses and plastics.

  • PDF

Numerical Analysis for the Performance Prediction of Combustion Chamber of Commercial Incinerator (상업용 소각로 연소실 성능예측을 위한 수치해석 연구)

  • Lee, Jin-Wook;Park, Byung-Soo;Yun, Yong-Seung;Seo, Jung-Dae;Huh, Il-Sang
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.141-153
    • /
    • 1999
  • Numerical analysis for the combustion flow in the combustion chamber of incineration system has been carried out in order to acquire the basic design capability of incineration system. Established mathematical model was applied to the performance prediction of the pre-designed combustion chamber of commercial plant. Especially, combustion characteristics and the variation of flow pattern have been deeply discussed in accordance with secondary air injection. Secondary air injection was effective for the turbulent mixing between air and carbon monoxide/volatile matter resulting in considerably reduced CO content at the exit. Secondary air injection was found to be one of the key design parameters because the size of recirculation zone could be changed with the variation of injection characteristics.

  • PDF

Composting of Agricultural, Livestock and Other Wastes for Farmland Utilization -Present Situation and Future- (호기성퇴비화(好氣性堆肥化)에 의한 농축산(農畜産) 및 기타폐엽물(其他廃葉物)의 녹농지리용(綠農地利用) -현상(現狀)과 장래(將來)-)

  • Hong, J.H.
    • Journal of Biosystems Engineering
    • /
    • v.13 no.3
    • /
    • pp.81-90
    • /
    • 1988
  • Agricultural and municipal wastes arc serious nuisance. in Korea. Disposal of these wastes by land application, incineration or burial have created serious environmental problems such as air pollution and ground water contamination. Uncomposted waste materials are also potential sources of plant and soil pathogens. As available sites for waste burial become more difficult to find and air quality standards for incineration become stricter, composting as a method for treating solid wastes will become more attractive. This article discussed the recent topics on composting to further develop a rational strategy. The future of composting is developed based on the interacting factors of the price of energy and fertilizer, public policy, economic considerations, and biotechnology.

  • PDF

A study on the bed combustion of solid waste (고형 폐기물층 연소에 관한 연구)

  • Sin, Dong-Hun;Choe, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.1-8
    • /
    • 1998
  • Waste combustion above a grate is the core process of incineration systems, stability of which should be guaranteed for emission minimization. However, complicated reactions and heat and mass transfer phenomena make understanding the process difficult. One dimensional bed combustor with a numerical combustion model is utilized to investigate the combustion process of the bed, using cubic wood particles as a simulated fuel. Bed combustion behavior is characterized with apparent flame propagation speed, which has close relationship with air supply rate and chemical and physical characteristics of the fuel. Base on the availability of oxygen, two distinct reaction zone is identified; the oxygen-limited and the reaction-limited zone leading to the extinction by excessive convection cooling. The numerical modeling shows good agreement with the experimental results. The transient bed combustion behavior of local temperature and oxygen consumption rate is adequately reproduced. The numerical model is extended to model the waste bed combustion of a commercial incineration plant, which shows meaningful results as well.

  • PDF

Deterioration Evaluation for Industrial Pipeline by Sectionalizing (산업시설 배관의 섹션화에 의한 노후도 평가)

  • Min, Hyuk-Ki;Kim, Sang-Bum;Kim, Byung-Woo;Kim, Hyoung-Ki;Park, Yool
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.3
    • /
    • pp.123-130
    • /
    • 2016
  • This study introduced deterioration evaluation item and criteria that could be applied to industrial facilities with the most widely used carbon steel pipe installed for ordinary piping (KSD 3507). Experimental industrial pipes were evaluated with pipe sectionalizing method combined with the established evaluation item and criteria to measure and manage semi-continuously for overall piping system. After applying outcomes from this study to a plant of incineration facility, a 42% saving in repairing and remodeling cost was achieved.

Development of Carbon Dioxide Emission Factor from Resource Recovery Facility (폐기물자원회수시설의 이산화탄소 배출계수 개발)

  • Kim, Seungjin;Im, Gikyo;Yi, Chi-Yeong;Lee, Seehyung;Sa, Jae-Hwan;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.4 no.1
    • /
    • pp.51-61
    • /
    • 2013
  • To address the problems associated with climate change and energy shortage, Korea has been making efforts to turn waste materials into usable energy. Due to the ongoing efforts to convert waste materials into energy, waste incineration is expanding to utilize the heat generated, and the subsequent greenhouse gas emissions from these waste material incineration are expected to increase. In this study, a municipal waste incineration plant that generates heat and electricity through heat recovery was selected as a subject facility. Methods for estimating the greenhouse gas emissions in the municipal waste incineration plant that was selected as a subject plant were sought, and the greenhouse gas emissions and emission factor were estimated. The $CO_2$ concentrations in discharge gas from the subject facility were on average 6.99%, and the result from calculating this into greenhouse gas emissions showed that the total amount of emissions was $254.60ton\;CO_2/day$. The net emissions, excluding the amount of greenhouse gas emitted from biomass incineration, was shown to be $110.59ton\;CO_2/day$. In addition, after estimating the emissions by separating the heat and electricity generated in the incineration facility, greenhouse gas emission factors were calculated using the greenhouse gas emissions produced per each unit of output. The estimated emission factor for heat was found to be $0.047ton\;CO_2/GJ$ and the emission factor for electricity was found to be $0.652ton\;CO_2/MWh$. The estimated emission factor was shown to be about 17% lower than the $0.783ton\;CO_2/MWh$ emission factor for thermal power plants that use fossil fuels. Waste material types and fossil carbon contents were evaluated as being the factors that have major effects on the greenhouse gas emissions and emission factor.