• Title/Summary/Keyword: Incident Detection Algorithm

Search Result 61, Processing Time 0.026 seconds

Development of Automatic Incident Detection Algorithm Using Image Based Detectors (영상기반의 자동 유고검지 모형 개발)

  • 백용현;오영태
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.6
    • /
    • pp.7-17
    • /
    • 2001
  • The purpose of this paper is to develop automatic incident detection algorithm using image based detector in freeway management system. This algorithm was developed by using neutral network for high speed roadway and by using speed and occupancy variable for low speed roadway. The image detector system with the developed automatic incident detection algorithm can detect multi-lane as well as several detect areas for each lane. To evaluate this system, field tests to measure the detecting rate of incidents were performed with other systems which have APID and DES algorithm at high speed roadway(freeway) and low speed roadway(national arterial). As the results of field test, it found that the detect rate of this system was highest rate comparing to other two systems.

  • PDF

Study on Incident Detection System Using Fuzzy Logic

  • Kim, Intaek;Lee, Eunggi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.268-271
    • /
    • 1998
  • this paper presents the potential application of fuzzy logic to the automatic incident detection system. While the conventional incident detection algorithms are based on a binary decision process, the algorithm using fuzzy logic can incorporate ambiguity which occurs in determining incidents. Since collecting good amount of data to construct data base for incidents is pretty expensive, a traffic simulator called FRESIM is used to simulate traffic condition in a freeway. Incident data are obtained by changing input parameters of the simulator and the fuzzy algorithm generates fuzzy rule for determining normal and incident traffic conditions. In this paper, various steps are described to test the algorithm and its results are summarized.

  • PDF

A Study of Improving Methods for The Performance of Freeway Incident Detection Algorithm (고속도로 돌발상황검지알고리즘 성능 개선기법에 관한 연구)

  • 강수구;손봉수;도철웅;이시복
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.6
    • /
    • pp.105-118
    • /
    • 2001
  • Incident detection rate and false alarm rate are the key measures tot estimating the performance of automatic incident detection algorithms. It is, however inherently very difficult to improve the two measures simultaneously. The main purpose of this study is to present some methods for solving the problem. For this, an incident detection algorithm has been designed in this study. The algorithm is consisted of two functions, one for detecting incident and another for detecting congestion. A logic for distinguishing non-recurrent congestion from recurrent congestion was employed in the algorithm. The new algorithm basically requires speed, flow, and occupancy data for defining incident situation, but the algorithm is able to perform this task without one of the three parameters. The performance of the algorithm has been evaluated by using the field data collected from Interstate Highway 880 in Bay Area, California. The empirical analysis results are very promising and thus, the algorithm proposed may be very useful for the analysts. This paper presents some empirical test results for the performance of California incident detection algorithm, only for the reference purpose.

  • PDF

An In-Tunnel Traffic Accident Detection Algorithm using CCTV Image Processing (CCTV 영상처리를 이용한 터널 내 사고감지 알고리즘)

  • Baek, JungHee;Min, Joonyoung;Namkoong, Seong;Yoon, SeokHwan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.2
    • /
    • pp.83-90
    • /
    • 2015
  • Almost of current Automatic Incident Detection(AID) algorithms involve the vulnerability that detects the traffic accident in open road or in tunnel as the traffic jam not as the traffic accident. This paper proposes the improved accident detection algorithm to enhance the detection probability based on accident detection algorithms applied in open roads. The improved accident detection algorithm provides the preliminary judgment of potential accident by detecting the stopped object by Gaussian Mixture Model. Afterwards, it measures the detection area is divided into blocks so that the occupancy rate can be determined for each block. All experimental results of applying the new algorithm on a real incident was detected image without error.

Development of Incident Detection Algorithm Using Naive Bayes Classification (나이브 베이즈 분류기를 이용한 돌발상황 검지 알고리즘 개발)

  • Kang, Sunggwan;Kwon, Bongkyung;Kwon, Cheolwoo;Park, Sangmin;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.25-39
    • /
    • 2018
  • The purpose of this study is to develop an efficient incident detection algorithm by applying machine learning, which is being widely used in the transport sector. As a first step, network of the target site was constructed with micro-simulation model. Secondly, data has been collected under various incident scenarios produced with combination of variables that are expected to affect the incident situation. And, detection results from both McMaster algorithm, a well known incident detection algorithm, and the Naive Bayes algorithm, developed in this study, were compared. As a result of comparison, Naive Bayes algorithm showed less negative effect and better detect rate (DR) than the McMaster algorithm. However, as DR increases, so did false alarm rate (FAR). Also, while McMaster algorithm detected in four cycles, Naive Bayes algorithm determine the situation with just one cycle, which increases DR but also seems to have increased FAR. Consequently it has been identified that the Naive Bayes algorithm has a great potential in traffic incident detection.

Development and Evaluation of Automatic Incident Detection Algorithm using Modified Flow-Occupancy Diagram (수정교통량-점유율 관계도를 이용한 돌발상황 자동검지알고리즘 개발 및 평가)

  • Kim, Sang-Gu;Kim, Young-Chun
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.229-239
    • /
    • 2008
  • Most algorithms for detecting incidents have been developed under the premise that congestion must happen whenever an incident occurs. For that reason, the performance of these algorithms could not be guaranteed in cases where congestion did not happen due to traffic operations with low flows despite the occurrence of an incident. The objective of this paper is to develop an automatic incident detection algorithm using a new diagram that can reliably detect the incident under various conditions of traffic operations including a low volume state. Compared with the McMaster Algorithm, the proposed algorithm in this paper was evaluated with three different cases in which the incidents occur in traffic operations with a low volume state, a relatively high volume state, and a recurrent congestion state. It is shown that the new algorithm has a capability to identify the flow characteristics of incidents for all the three cases and is much better than McMaster algorithm in terms of detection rate and false alarm rate.

퍼지이론을 이용한 유고감지 알고리즘

  • 이시복
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.12a
    • /
    • pp.77-107
    • /
    • 1995
  • This paper documents the development of a fuzzy logic based incident detection model for urban diamond interchanges. Research in incident detection for intersections and arterials is at a very initial stage. Existing algorithms are still far from being robust in dealing with the difficulties related with data availability and the multi-dimensional nature of the incident detection problem. The purpose of this study is to develop a new real-time incident detection model for urban diamond interchanges. The development of the algorithm is based on fuzzy logic. The incident detection model developed through this research is capable of detecting lane¬blocking incidents when their effects are manifested by certain patterns of deterioration in traffic conditions and, thereby, adjustments in signal control strategies are required. The model overcomes the boundary condition problem inherent in conventional threshold-based concepts. The model captures system-wide incident effects utilizing multiple measures for more accurate and reliable detection, and serves as a component module of a real-time traffic adaptive diamond interchange control system. The model is designed to be readily scalable and expandable for larger systems of arterial streets. The prototype incident detection model was applied to an actual diamond interchange to investigate its performance. A simulation study was performed to evaluate the model's performance in terms of detection rate, false alarm rate, and mean time to detect. The model's performance was encouraging, and the fuzzy logic based approach to incident detection is promising.

  • PDF

Acoustic Signal-Based Tunnel Incident Detection System (음향신호 기반 터널 돌발상황 검지시스템)

  • Jang, Jinhwan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.5
    • /
    • pp.112-125
    • /
    • 2019
  • An acoustic signal-based, tunnel-incident detection system was developed and evaluated. The system was comprised of three components: algorithm, acoustic signal collector, and server system. The algorithm, which was based on nonnegative tensor factorization and a hidden Markov model, processes the acoustic signals to attenuate noise and detect incident-related signals. The acoustic signal collector gathers the tunnel sounds, digitalizes them, and transmits the digitalized acoustic signals to the center server. The server system issues an alert once the algorithm identifies an incident. The performance of the system was evaluated thoroughly in two steps: first, in a controlled tunnel environment using the recorded incident sounds, and second, in an uncontrolled tunnel environment using real-world incident sounds. As a result, the detection rates ranged from 80 to 95% at distances from 50 to 10 m in the controlled environment, and 94 % in the uncontrolled environment. The superiority of the developed system to the existing video image and loop detector-based systems lies in its instantaneous detection capability with less than 2 s.