• Title/Summary/Keyword: Incident Angle

Search Result 617, Processing Time 0.027 seconds

Analysis of planar optical waveguides using incident angle of complex number (복소수 입사각을 이용한 평판 광도파로 해석)

  • 임영준;김창민
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.5
    • /
    • pp.149-154
    • /
    • 1996
  • We propose the concept of incident angle of complex number and analyze planar optical waveguides by applying the concept. The incident angle of complex number is concerned with the modeling of prism-gap-waveguide structures. It is shown that, when optical waveguides are analyzed by use of the transfer matrix method, the proposed concept enable us to find solutions faster and more accurately than ghatak's method which introduces the leaky structure.

  • PDF

A Numerical Study on Pontoon Type Floating Breakwaters in Oblique Waves

  • Kim, Do-Young
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 2000
  • A numerical investigation was made to examine characteristics of rectangular pontoon type floating breakwaters in oblique waves. Sway and heave wave exciting forces, roll moment acting on the floating breakwater and three motion reponses decrease as the incident wave angle increases for the most of the wave ranges. There exists a minimum wave transmission coefficient which is a function of wave frequency. In short wave range wave transmission coefficient increases as the incident wave angle increases. In long wave range, however, wave transmission coefficient decreases as the wave incident angle increases.

  • PDF

Effects of Bias Voltage and Ion-incident Angle on the Etching of Photoresist in a High-density CHF3 Plasma (고밀도 CHF3 플라즈마에서 바이어스 전압과 이온의 입사각이 Photoresist의 식각에 미치는 영향)

  • Kang, Se-Koo;Min, Jae-Ho;Lee, Jin-Kwan;Moon, Sang Heup
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.498-504
    • /
    • 2006
  • The etch rates of photoresist (PR) and the etch selectivity of $SiO_2$ to PR in a high density $CHF_3$ plasma were investigated at different ion-incident angles and bias voltages. A Faraday cage was employed for the accurate control of ion-incident angles. The ion energy was controlled by changing bias voltages. The etch rate of $SiO_2$ continuously decreased with ion-incident angles but the etch rate of PR remained constant up to the middle angle region and decreased afterwards. The etch rates of $SiO_2$ normalized to those at $0^{\circ}$ incident angle changed with the ion-incident angle following a cosine(${\theta}$) curve. On the other hand, the normalized etch rates of the PR changed showing a drastic over-cosine shape in the middle angle region. The etch selectivity of $SiO_2$ to PR decreased with an increase in the ion-incident angle because the etch yields of PR were enhanced by physical sputtering in the middle angle region compared to the case of $SiO_2$ etching. The etch selectivity of $SiO_2$ to PR decreased with an increase in the bias voltage at nearly all ion-incident angles.

Spectral Resolution Enhancement of Acousto-Optic Tunable Filter(AOTF) using Incident Angle Variation (음향광학변조필터의 입사각 변화를 이용한 분해능 향상 방법)

  • You, Jang-Woo;Ahn, Jeong-Ho;Kim, Dae-suk;Kwak, Yoon-Keun;Kim, Soo-Hyun;Lee, Yun-Woo;Whang, In-Duk
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.607-612
    • /
    • 2004
  • Spectral resolution enhancement method of Acousto-Optic Tunable Filter (AOTF) using incident light angle variation is described. AOTF is a small, mechanically rigid, high speed and spectral resolution light tunable filter. The basic theory of AOTF and its experimental verification is described. AOTF can generate two opposite polarized light simultaneously which wavelength can be changed by incident angle variation. We focused on the common region of two filtered light at the specific incident angle. This region can be used to enhance the spectral resolution of AOTF.

  • PDF

Analysis of Maximum Solar Radiation on Inclined Surfaces for the Installation of Solar Thermal Systems in Korea Using the Optimum Installation Angle (국내 태양열시스템 설치를 위한 시스템 최적 설치각 산출을 통한 최대 경사면일사량 분석)

  • Jo, Dok-Ki;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.47-54
    • /
    • 2009
  • The amount of incident rays over inclination according to direction has been widely utilized as important data m installing solar thermal systems. To optimize the incident solar radiation, the slope, that is the angle between the plane surface in question and the horizontal, and the solar azimuth angles are needed for these solar thermal systems. This is because the performance of the solar thermal systems in much affected by angle and direction of incident rays. Recognizing that factors mentioned above are of importance, actual experiment on the moving route of the sun have been performed in this research to obtain the angle of inclination with which the maximum incident rays can be absorbed. After all, the standard for designing highly optimized solar thermal systems will be provided for designers and employees working in the solar collector related industries.

Theoretical investigation about the hydrodynamic performance of propeller in oblique flow

  • Hou, Lixun;Hu, Ankang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.119-130
    • /
    • 2019
  • This paper establishes an iterative calculation model for the hydrodynamic performance of propeller in oblique flow based on low order potential based surface panel method. The hydrodynamic performance of propeller is calculated through panel method which is also used to calculate the induced velocity. The slipstream of propeller is adjusted according to the inflow velocity and the induced velocity. The oblique flow is defined by the axial inflow velocity and the incident angle. The calculation results of an instance show that the thrust and torque of propeller decrease with the increase of axial inflow velocity but increase with the incident angle. The unsteadiness of loads on the propeller blade surface gets more intensified with the increases of axial inflow velocity and incident angle. However, comparing with the effect of axial inflow velocity on the unsteadiness of the hydrodynamic performance of propeller, the effect of the incident angle is more remarkable.

High-Frequency Bistatic Scattering from a Corrugated Sediment Surface

  • Cho, Hong-Sang;La, Hyoung-Sul;Yoon, Kwan-Seob;Na, Jung-Yul;Kim, Bong-Chae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.2E
    • /
    • pp.60-68
    • /
    • 2006
  • High-frequency bistatic scattering measurements from a corrugated surface were made in an acoustic water tank. First the azimuthal scattering pattern was measured from an artificially corrugated surface which has varying impedance. The corrugated surface was installed both transverse to the direction of incident wave and longitudinal to the direction of incident wave. The angle between the corrugated surface and the direction of the incident wave was about $45^{\circ}$. Second, the scattering strengths were measured from the flat sediment and the corrugated sediment. A critical angle of about $37^{\circ}$ was calculated in the acoustic water tank. The measurements were made at three fixed grazing angles: $33^{\circ}$ (lower than critical angle), $37^{\circ}$ (critical angle), and $41^{\circ}$ (higher than critical angle). The scattering angle and the grazing angle are equal in each measurement. Frequencies were from 50 kHz to 100 kHz with an increment of 1 kHz. The corrugated sediment was made transverse to the direction of the incident wave. The first measurement indicates that the scattering patterns depend on the relations between the corrugated surface and the direction of the incident wave. In the second measurement, the data measured from the flat sediment were compared to the APL-UW model and to the NRL model. The NRL model's output shows more favorable comparisons than the APL-UW model. In case of the corrugated sediment, the model and the measured data are different because the models used an isotropic wave spectrum of sediment roughness in the scattering calculations. The isotropic wave spectrum consists of $w_2$ and ${\gamma}_2$. These constants derived from sediment names or bulk size. The model which used the constants didn't consider the effect of a corrugated surface. In order to consider a corrugated surface, the constants were varied in the APL-UW model.

The Study on Optimum Installation angle of Photovoltaic Arrays using the Expert System (전문가시스템을 이용한 태양광 어레이의 최적설치 각도에 관한 연구)

  • Yu, Gwon-Jong;Lee, Yo-Han;So, Jung-Hun;Seong, Se-Jin;Yu, Byung-Gyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.107-115
    • /
    • 2007
  • The measured solar radiation incident on tilted surfaces has been widely used as important solar radiation data in installing photovoltaic arrays. To optimize the incident solar radiation, the slope, that is the angle between the plane surface in question and the horizontal, and the solar azimuth angles are needed for these solar photovoltaic systems. This is because the performance of the solar photovoltaic systems is much affected by angle and direction of incident rays. The expert system can predict the optimum installation angle of photovoltaic arrays with those factors.

Molecular Simulation Studies of Scattered and Penetrated Hydrogen Ions II. 45° Incident Angle to Ni (100) Surface (산란 및 투과된 수소 이온의 분자 전산 연구 II. 니켈 (100) 표면의 45° 입사)

  • Suh, Soong-Hyuck;Min, Woong-Ki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.1
    • /
    • pp.51-63
    • /
    • 2001
  • In this paper molecular dynamics simulations were employed to investigate the structural and dynamic properties of hydrogen ions impacted on the Ni (100) surface with the $45^{\circ}$ incident angle. The initial kinetic energies of the hydrogen ion range from 100 to 1,600 eV. Together with the trajectory visualization of hydrogen ions, we computed scattering and penetration yields, mean energies and angles, and probability and energy distributions as a function of longitudinal and azimuthal directions. In the case of lower energy scattering ions, the multiple collision effects were found to be important to the third layers or lower. For higher energy penetrating ions, compared with the normal incident angle, it was significant the effective channeling effects through the Ni layers and the angle dependencies were indicated both in the longitudinal and the azimuthal angle directions.

  • PDF

Bistatic Scattering from a Hemi-Spherically Capped Cylinder

  • Park, Sang-Hyun;La, Hyoung-Sul;Cho, Sung-Ho;Oh, Taek-Hwan;Kim, Young-Shin;Lee, Chang-Won;Na, Jung-Yul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.3E
    • /
    • pp.115-122
    • /
    • 2006
  • The bistatic scattering of an incident wave by a hemi-spherically capped cylinder is of particular interest because it has rarely been studied until the present day. The configuration of a hemi-spherically capped cylinder is similar to naval underwater weapons (submarines, mines, torpedos, etc.), but which is not exactly the same. This paper describes a novel laboratory experiment aimed at direct measurement of bistatic scattering by a hemi-spherically capped cylinder. Bistatic scattering by a hemi-spherically capped cylinder was measured in an acoustic water tank (5m long, 5m wide, 5m deep) using a high frequency projector (120kHz) and hydrophone. Measurements of monostatic scattering were also made under the same conditions. The bistatic scattering pattern by a hemi-spherically capped cylinder was measured against the incident angles $(0^{\circ},\;15^{\circ},\;20^{\circ},\;30^{\circ},\;45^{\circ},\;60^{\circ},\;90^{\circ})$ in order to verify various scattering pattern characteristics by the change of incident angle. The results indicate that the bistatic scattering TS at a wide scattering angle is much stronger than the mono static scattering TS. In bistatic scattering, the forward scattering TS is significantly stronger than the backward scattering TS, and the forward scattering pattern is also broader. In case of seven incident angles, the maximum value of forward scattering TS is about 14dB stronger than that of backward scattering TS. It is also found that forward scattering varies with the incident angle of sound to a much less extent than backscattering, and it is not seriously affected by the incident angle. These features could be the advantages of using forward scattering for detecting underwater targets at long range and increasing detection area and probability.