• Title/Summary/Keyword: Incidence geometry

Search Result 27, Processing Time 0.031 seconds

Feasibility Study on FSIM Index to Evaluate SAR Image Co-registration Accuracy (SAR 영상 정합 정확도 평가를 위한 FSIM 인자 활용 가능성)

  • Kim, Sang-Wan;Lee, Dongjun
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.847-859
    • /
    • 2021
  • Recently, as the number of high-resolution satellite SAR images increases, the demand for precise matching of SAR imagesin change detection and image fusion is consistently increasing. RMSE (Root Mean Square Error) values using GCPs (Ground Control Points) selected by analysts have been widely used for quantitative evaluation of image registration results, while it is difficult to find an approach for automatically measuring the registration accuracy. In this study, a feasibility analysis was conducted on using the FSIM (Feature Similarity) index as a measure to evaluate the registration accuracy. TerraSAR-X (TSX) staring spotlight data collected from various incidence angles and orbit directions were used for the analysis. FSIM was almost independent on the spatial resolution of the SAR image. Using a single SAR image, the FSIM with respect to registration errors was analyzed, then use it to compare with the value estimated from TSX data with different imaging geometry. FSIM index slightly decreased due to the differencesin imaging geometry such as different look angles, different orbit tracks. As the result of analyzing the FSIM value by land cover type, the change in the FSIM index according to the co-registration error was most evident in the urban area. Therefore, the FSIM index calculated in the urban was mostsuitable for determining the accuracy of image registration. It islikely that the FSIM index has sufficient potential to be used as an index for the co-registration accuracy of SAR image.

Calculation of Dose Conversion Coefficients in the Anthropomorphic MIRD Phantom in Broad Unidirectional Beams of Monoenergetic Photons (MIRD 인형팬텀의 넓고 평행한 감마선빔에 대한 선량 환산계수 계산)

  • Chang, Jai-Kwon;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.1
    • /
    • pp.47-58
    • /
    • 1997
  • The conversion coefficients of effective dose per unit air kerma and equivalent dose per unit fluence were calculated by MCNP4A code for antero-posterior(AP) and postero- anterior(PA) incidence of broad, unidirectional beams of photons into anthropomorphic MIRD phantom. Calculations have been performed for 20 monoenergetic photons of energy ranging from 0.03 to 10 MeV. The conversion coefficients showed a good agreement with the corresponding values given in the draft publication of joint task group of ICRP and ICRU within 10%. The deviations may arise from the differences of geometry in the MIRD phantom and the ADAM/EVE phantoms, and the differences in the codes and cross-section data used. Inclusion of a specific oesophagus model results in effective dose slightly different(5% at most) from the effective doses obtained by adopting the equivalent doses for the thymus or pancreas. Deletion of the ULI from the remainder organ appeared not to be significant for the cases of photon dosimetry covered in this study.

  • PDF

Leaky Wave Radiation and Surface Wave Launching Problem in a Dielectrically Covered Periodically Slitted Parallel-Plate Waveguide (주기적인 슬릿을 갖고 유전체층으로 덮힌 평행평판 도파관에서의 누설파 복사 및 표면파 launching)

  • 이종익;이철훈;조영기
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.4
    • /
    • pp.25-33
    • /
    • 1999
  • Leaky wave radiation and surface wave launching problems in a dielectrically covered and periodically slitted parallel-plate waveguide(PPW) are considered for the TEM wave incidence case. Both the infinite and finite periodic geometries are analyzed by use of the method of moments. Some numerical results for the reflected and transmitted powers in the PPW, radiation efficiency into the free space, surface wave launching efficiency into the slab, antenna gain, and radiation patterns against dielectric thickness are presented to show the effect of the dielectric cover on the performances of the slitted leaky wave antenna. In addition, the method for improving surface wave launching efficiency using the proposed periodic geometry is described and maximum launching efficiency of 97.5% is obtained theoretically. So this structure is thought to be promising as an efficient feeder of dielectric grating antenna as well as image guide.

  • PDF

Interlayer and Interfacial Exchange Coupling of IrMn Based MTJ

  • Wrona, J.;Stobiecki, T.;Czapkiewicz, M.;Kanak, J.;Rak, R.;Tsunoda, M.;Takahashi, M.
    • Journal of Magnetics
    • /
    • v.9 no.2
    • /
    • pp.52-59
    • /
    • 2004
  • As deposited and annealed MTJs with the structure of $Ta(5 nm)/Cu(10 nm)/Ta(5 nm)/Ni_{80}Fe_{20}(2 nm)/Cu(5 nm)/ Ir_{25}Mn_{75}(10 nm)/Co_{70}Fe_{30}(2.5 nm)/Al-O/Co_{70}Fe_{30}(2.5nm)/Ni_{80}Fe_{20}(t)/Ta(5nm)/Ni_{80}Fe_{20}(t)/Ta(5 nm)$, where t=10, 30, 60 and 100 nm were characterized by XRD and magnetic hysteresis loops measurements. The XRD measurements were done in grazing incidence $(GID scan-2{\theta})$ and ${\theta}-2{\theta}$ geometry, by rocking curve $(scan-{\omega})$ and pole figures in order to establish correlation between texture and crystallites size and magnetic parameters of exchange biased and interlayer coupling. The variations of shifting and coercivity field of free and pinned layers after annealing in $300^{\circ}C$ correlate with the improvement of [111] texture and grains size of $Ni_{80}Fe_{20}$ and $Ir_{25}Mn_{75}$ respectively. The exchange biased and the coercivity fields of the pinned layer linearly increased with increasing grain size of $Ir_{25}Mn_{75}$, The reciprocal proportionality between interlayer coupling and coercivity fields of the free layer and grain size of $Ni_{80}Fe_{20}$ was found. The enhancement of interlayer coupling between pinned and free layers, after annealing treatment, indicates on the correlated in-phase roughness of dipolar interacting interfaces due to increase of crystallites size of $Ni_{80}Fe_{20}$.

Evaluation of Geometric Error Sources for Terrestrial Laser Scanner

  • Lee, Ji Sang;Hong, Seung Hwan;Park, Il Suk;Cho, Hyoung Sig;Sohn, Hong Gyoo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.79-87
    • /
    • 2016
  • As 3D geospatial information is demanded, terrestrial laser scanners which can obtain 3D model of objects have been applied in various fields such as Building Information Modeling (BIM), structural analysis, and disaster management. To acquire precise data, performance evaluation of a terrestrial laser scanner must be conducted. While existing 3D surveying equipment like a total station has a standard method for performance evaluation, a terrestrial laser scanner evaluation technique for users is not established. This paper categorizes and analyzes error sources which generally occur in terrestrial laser scanning. In addition to the prior researches about categorizing error sources of terrestrial Laser scanning, this paper evaluates the error sources by the actual field tests for the smooth in-situ applications.The error factors in terrestrial laser scanning are categorized into interior error caused by mechanical errors in a terrestrial laser scanner and exterior errors affected by scanning geometry and target property. Each error sources were evaluated by simulation and actual experiments. The 3D coordinates of observed target can be distortedby the biases in distance and rotation measurement in scanning system. In particular, the exterior factors caused significant geometric errors in observed point cloud. The noise points can be generated by steep incidence angle, mixed-pixel and crosstalk. In using terrestrial laser scanner, elaborate scanning plan and proper post processing are required to obtain valid and accurate 3D spatial information.

A Study on the Influence of S Shaped Annular Duct on the Centrifugal Compressor Performance (S자형 환형덕트가 원심압축기 성능에 미치는 영향에 관한 연구)

  • 정주현;전승배;김승우
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.64-73
    • /
    • 1998
  • In twin spool aero-engine, there may be a S shaped annular duct between high pressure and low pressure spools. The flow passing this S shaped duct experiences the flow acceleration and deceleration due to the convex and concave surface of the duct as well as the increase of blockage according to the boundary layer growth along the surfaces. So, the high pressure compressor which is located behind the S shaped duct is influenced by the non-uniform flow field generated by the geometry of inlet duct. To study the influence of the S shaped duct on the centrifugal stage, performance tests were implemented for the compressor with straight cylindrical inlet duct and with S shaped inlet duct, respectively. The test results showed that the performance, such as pressure ratio and efficiency, of the compressor with S shaped duct was worse than that of the compressor with cylindrical duct. And the compressor with S shaped duct had reduced maximum flow rate around design speed. To investigate the cause of performance degradation, flow anlaysis was performed for the impeller in front of which is located S shaped annular duct. The result of CFD showed the strong acceleration of the flow in the axial direction around the inducer tip region which caused the increase of relative mach number and the decrease of incidence angle of the flow.

  • PDF

Experimental Investigation of Aerodynamic Force Coefficients and Flutter Derivatives of Bridge Girder Sections (교량단면의 공기력계수 및 플러터계수에 관한 실험적 연구)

  • Cho, Jae-Young;Lee, Hak-Eun;Kim, Young-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.887-899
    • /
    • 2006
  • The aim of this study is to investigate a correlation between fundamental data on aerodynamic characteristics of bridge girder cross-sections, such as aerodynamic force coefficients and flutter derivatives, and their aerodynamic behaviour. The section model tests were carried out in three stages. In the first stage, seven deck configurations were studied, namely; Six 2-edge girders and one box girder. In this stage, changes in aerodynamic force coefficients due to geometrical shape of girders, incidence angle of flow, wind directions and turbulence intensities were studied by static section model tests. In the second stage, the dynamic section model tests were carried out to investigate the relativity of static coefficients to dynamic responses. And finally, the two-dimensional (lift-torsion) aerodynamic derivatives of three bridge deck configurations were investigated by dynamic section model tests. The aerodynamic derivatives can be best described as a representation of the aerodynamic damping and the aerodynamic stiffness provided by the wind for a given deck geometry. The method employed here to extract these unsteady aerodynamic properties is known as the initial displacement technique. It involves the measurement of the decay in amplitude with time of an initial displacement of the deck in heave and torsion, for various wind speeds, in smooth flow. It is suggested that the proposed aerodynamic force coefficients and flutter derivatives of bridge girder sections will be potentially useful for the aeroelastic analysis and buffeting analysis.