• Title/Summary/Keyword: Incidence Angle

Search Result 579, Processing Time 0.029 seconds

Power Performance Characteristics of Transparent Thin-film BIPV Module depending on an installation angle (건물일체형 투광성 PV모듈의 설치각도별 발전특성에 관한 연구)

  • Song, Jong-Hwa;Yoon, Jong-Ho;An, Young-Sub;Kim, Seok-Ge;Lee, Sung-Jin;Choung, Youn-Kyoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.2
    • /
    • pp.58-63
    • /
    • 2008
  • This study has analysed power output characteristics of transparent thin-film PV module depending on incidence angle and azimuth. The experiment results showed power outputs of transparent thin-film PV module applied to full-scale mock up model on slope of $90^{\circ},\;30^{\circ},\;0^{\circ}$ to the south. The simulation results was evaluated power outputs of transparent thin-film PV module depending on incidence angle and azimuth after calibrating the experimental and computed data. As a result. the best power output performance of transparent thin-film PV module was obtained at slope of $30^{\circ}$ to the south, producing the annual power output of 977kWh/kWp. The annual power output data demonstrated that the PV module with a slope of $30^{\circ}$ could produce a 68 % higher power output than that with a slope of $90^{\circ}$ with respect to the inclined slope of the module, Furthermore, the PV module facing south showed a 22 % higher power output than that facing to the east in terms of the angle of the azimuth, Specipically. the varying power output with incidence angle of PV module can be resulted from the influence of incidence angle modifier of glass on PV module. That is, the solar energy transmission can be reduced as an increase of incidence angle of PV module. Therefore, when the inclined slope of the PV module was over $70^{\circ}$ there was a significant reduction of power output, and this was caused by the decrease of solar energy transmission in the transparent thin-film PV module.

Numerical Study on the Effect of Guide Vane Position and Angle on Heat Transfer and Flow Characteristics of a Pin-fin Channel with a Guide Vane (가이드 베인을 부착한 핀-휜 유동에서 가이드 베인 위치와 입사각에 따른 전열 및 유동 특성에 관한 수치적 연구)

  • Lee, Deukho;Oh, Yeongtaek;Bae, Jihwan;Lee, Changhyeong;Kim, Kuisoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.35-43
    • /
    • 2019
  • In this study, a guide vane with varying positions and incidence angles was adopted to a pin-fin channel to analyze the change in thermal performance and pressure loss characteristics. A numerical analysis was conducted to investigate the effect of incidence angles and positions on heat transfer and flow characteristics at Re =1400. The results of it were compared those of a pin-fin channel without a guide vane. In case 1 when the incidence angle is $0^{\circ}$, the heat transfer performance is maximized and improved by approximately 5% when compared to the pin-fin channel without the guide vane. In case 2 when the incidence angle is $10^{\circ}$, the pressure loss is minimized and decreased by approximately 1.9% when compared to the pin-fin channel without the guide vane.

Influence of ground motion selection methods on seismic directionality effects

  • Cantagallo, Cristina;Camata, Guido;Spacone, Enrico
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.185-204
    • /
    • 2015
  • This study investigates the impact of the earthquake incident angle on the structural demand and the influence of ground motion selection and scaling methods on seismic directionality effects. The structural demand produced by Non-Linear Time-History Analyses (NLTHA) varies with the seismic input incidence angle. The seismic directionality effects are evaluated by subjecting four three-dimensional reinforced concrete structures to different scaled and un-scaled records oriented along nine incidence angles, whose values range between 0 and 180 degrees, with an increment of 22.5 degrees. The results show that NLTHAs performed applying the ground motion records along the principal axes underestimate the structural demand prediction, especially when plan-irregular structures are analyzed. The ground motion records generate the highest demand when applied along the lowest strength structural direction and a high energy content of the records increases the structural demand corresponding to this direction. The seismic directionality impact on structural demand is particularly important for irregular buildings subjected to un-scaled accelerograms. However, the orientation effects are much lower if spectrum-compatible combinations of scaled records are used. In both cases, irregular structures should be analyzed first with pushover analyses in order to identify the weaker structural directions and then with NLTHAs for different incidence angles.

Oscillator Strength of Normal-incidence Intersubband Absorption in Conduction Bands of Si and Ge Quantum Wells Using Polarization

  • Lee, Chanho
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.80-85
    • /
    • 1998
  • A theoretical calculation and an optical measurement method of normal-incidence absorption are proposed. By using a waveguide structure, optical interference and the problem of low level signal can be avoided in the measurement of normal-incidence absorption. The oscillator strength of intersubband absorption for a waveguide structure is calculated in Si(001), Si(110), and Ge(001) quantum wells. The polarization angle dependence of the measured and the calculated absorption strength can be obtained with the same waveguide structure, and be compared after normalization. The normal-incidence absorption in Si(110) and Ge(001) quantum wells is shown theoretically, and can be observed in the optical measurement using waveguide structures at the polarization angle of 90$^{\circ}$.

  • PDF

Diffraction Anomalies on the Periodic Strip Grating over a Grounded Dielectric Layer in Case of Oblique Incidence and Arbitrary Polarization (임의의 편파로서 비스듬한 각도로 입사하는 전자파의 경우에 대한 접지된 유전체층 위에 놓여있는 주기적인 스트립격자 구조에서의 특이한 회절현상)

  • 조웅희;고지환;조영기
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.2
    • /
    • pp.238-252
    • /
    • 1998
  • Diffraction anomalies in the periodic strip grating over a grounded dielectric layer are investigated for the plane wave incidence case of both arbitrary(oblique) incidence angle and arbitrary polarization by use of the spectral domain method combined with the sampling theorem. Some numerical results for the Bragg and Off-Bragg blazing phenomena for the cases of arbitrary incidence angle and polarization as well as TE and TM polarization are presented along with discussions on those phenomena.

  • PDF

A Elicitation Method of Optimum Slat Angle of Fixed Venetian Blind Considering Energy Performance and Discomfort Glare in Buildings (건물에너지성능 및 불쾌현휘를 고려한 고정형 블라인드의 최적 슬랫각도 도출 방법에 관한 연구)

  • Park, Jang Woo;Yoon, Jong Ho;Oh, Myung-Hwan;Lee, Kwang-Ho
    • KIEAE Journal
    • /
    • v.12 no.6
    • /
    • pp.107-112
    • /
    • 2012
  • The purpose of this study is to determine the optimum slat angle of the venetian blind which was applied at an outer skin of a curtain-wall system. The evaluation of the blind slat angle was performed in terms of the comfortable visual environment and decreased energy consumption. The office building prototype was considered for the analysis and simulation variables include application of blind, blind slat angle and dimming control of lighting. The annual energy consumption and incidence rate of discomfort glare were analyzed using EnergyPlus which is developed by the U. S. Department of Energy for the detailed building energy simulation. As a result, it turns out that when the blind (reflectance: 0.5) was installed, the annual energy consumption was greater than that of the base model. However, when the dimming control was applied, the maximum energy saving of 16.3% could be achieved at a slat angle of $0^{\circ}$. In addition, in case of the base model, the incidence rate of discomfort glare was 84%, while the case of the blind with the slat angle of $0^{\circ}$ showed that the incidence rate of discomfort glare was 42.4%. Consequently, the results showed that the slat angle of $55^{\circ}$ with dimming control was the optimum strategy for the comfortable visual environment and decreased energy consumption.

1.55 μm continuous tuning external cavity laser (1.55 μm 연속 가변 외부 공진기형 레이저)

  • 김강호;권오기;심은덕;이동훈;김종회;김현수;오광룡;김동유
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.321-326
    • /
    • 2003
  • We constructed grating- tuned external cavity semiconductor lasers using Littman and Littrow configuration, for which the wavelengths are tuned by rotation of the grating. This wavelength tunable semiconductor laser is one of the main devices of WDM optical communication. In Littman configuration, the wavelength range of about 60 nm (The C- and L-band range of 1,530~1,590 nm) was obtained by changing the incidence angle of the grating about $\pm$1$^{\circ}$ from the incidence angle of 70$^{\circ}$. In the 40 nm tuning range, the output power variation was less than 1.25 ㏈ and the side mode suppression ratio(SMSR) was 32 ㏈. In Littrow configuration (The incidence angle and the first order diffraction angle is the same, i.e. $\alpha$=$\delta$), the wavelength tuning range was about 80 nm for the same conditions used in Littman configuration except the incidence angle ($\alpha$=49$^{\circ}$). In 60 nm tuning range, the output power variation was less than 1.5 ㏈ and SMSR was 35 ㏈.

Effect of Incidence Angle of Current on the Hydraulic Resistance Capacity of Clayey Soil (흐름의 입사각이 점성토 지반의 수리저항성능에 미치는 영향)

  • Kim, Young-Sang;Han, Byung-Duck;Kang, Gyeong-O
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.1
    • /
    • pp.26-35
    • /
    • 2012
  • Until now, study on the hydraulic resistance characteristics of the ground at the river and the ocean current has been focused on the behavior under uni-directional flow without the direction change of flow. However, recent research result shows that scour rate which were measured under the bi-directional flow was much higher than those measured under uni-directional flow for both fine grained and coarse soil. Since the direction of inflow and return flow at the shore, where the structure will be constructed, is not always $180^{\circ}$, effect of the incidence angle on the hydraulic resistance capacity of the ground should be examined. Using the improved EFA which can consider the direction change of flow, hydraulic resistance capacities of the artificially composed clayey fine grained soil and clayey sandy soil under $0^{\circ}$, $90^{\circ}$, $135^{\circ}$, $180^{\circ}$ flow angle of incidence were assessed. Test result shows that hydraulic resistance capacity decreases and scour rate increase with the increase of the incidence angle between inflow and return flow. For the low consolidation pressure condition, hydraulic resistance capacity of the fine grained soil decreases rapidly. While the hydraulic resistance capacity of the coarse grained soil decreases more rapidly than fine grained soil under high consolidation pressure. Eventually since the larger the incidence angle between inflow and return flow, the larger the scour rate. Hydraulic resistance capacity under bi-directional flow($0^{\circ}{\longleftrightarrow}180^{\circ}$) should be examined for the design purpose.

Incident Angle Dependence of Quantum Efficiency in c-Si Solar Cell or a-Si Thin Film Solar Cell in BIPV System (광 입사각이 BIPV에 적용되는 단결정 또는 비정질 실리콘 태양전지의 양자효율에 미치는 영향)

  • Kang, Jeong-Wook;Son, Chan-Hee;Cho, Guang-Sup;Yoo, Jin-Hyuk;Kim, Joung-Sik;Park, Chang-Kyun;Cha, Sung-Duk;Kwon, Gi-Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.62-68
    • /
    • 2012
  • The conversion efficiency of solar cells depending on incident angle of light is important for building-integrated photovoltaics (BIPV) applications. The quantum efficiency is the ratio of the number of charge carriers collected by the solar cell to the number of photons of a given energy shining on the solar cell. The analysis of angle dependence of quantum efficiencies give more information upon the variation of power output of a solar cell by the incident angle of light. The variations in power output of solar cells with increasing angle of incidence is different for the type of cell structures. In this study we present the results of the quantum efficiency measurement of single-crystalline silicon solar cells and a-Si:H thin-film solar cells with the angle of incidence of light. As a result, as the angle of incidence increases in single-crystalline silicon solar cells, quantum efficiency at all wavelength (300~1,100 nm) of light were reduced. But in case of a-Si:H thin-film solar cells, quantum efficiency was increased or maintained at the angle of incidence from 0 degree to about 40 degrees and dramatically decrease at more than 40 degrees in the range of visible light. This results of quantum efficiency with increasing incident angle were caused by haze and interference effects in thin-film structure. Thus, the structural optimization considering incident angle dependence of solar cells is expected to benefit BIPV.