• Title/Summary/Keyword: Inchworm Type Locomotion

Search Result 2, Processing Time 0.018 seconds

Functional Colonoscope Robot System (기능성 대장 내시경 로봇 시스템)

  • Lim, Hun-Young;Jeong, Youn-Koo;Kim, Byung-Kyu;Park, Jong-Hyeon;Park, Jong-Oh
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.954-959
    • /
    • 2003
  • Colonoscopy is an important medical procedure for the diagnosis of various diseases like cancers in the colon and rectum. But it requires a lot of time for a doctor to acquire dexterous skills necessary to perform successful colonoscopy. Moreover, to many patients, conventional colonoscopy simply takes too long time. Therefore, some studies on the development of autonomous and more convenient colonoscope are carried out. In this Paper, we Propose a functional colonoscope robot system that has a locomotive function with a hollow body, a steering system, and other basic functions of typical conventional colonoscope systems. The concept and each component of the functional colonoscope system are described in this paper. In order to evaluate the functional performance of the colonoscope robot, we carried out in -vitro and in-vivo tests.

Design and Performance Evaluation of Impact Type Actuator Using Magnetic Force (자기력을 이용한 충격형 액추에이터의 설계 및 성능 평가)

  • Min, Hyun-Jin;Lim, Hyung-Jun;Kim, Byung-Kyu;Kim, Soo-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1438-1445
    • /
    • 2002
  • For robotic endoscope, some researchers suggest pneumatic actuators based on inchworm motion. But, the existing endoscopes have not been replaced completely because human intestine is very sensitive and susceptible to damage. We design and test a new locomotion of robotic endoscope that allows safe maneuverability in the human intestine. The actuating mechanism is composed of two solenoids at each side and a single permanent magnet. When the current direction is reversed, repulsive force and attractive at the opposition side propels permanent magnet. Impact force against robotic endoscope transfers momentum from moving magnet to endoscope capsule. The direction and moving speed of the actuator can be controlled by adjustment of impact force. Modeling and simulation experiments are carried out to predict the performance of the actuator. Simulations show that force profile of permanent magnet is the dominant factor for the characteristic of the actuator. The results of simulations are verified by comparing with the experimental results.