• Title/Summary/Keyword: Incheon river

Search Result 108, Processing Time 0.03 seconds

A Study on the Sensitivity Analysis of CHICAGO Model Parameters due to Watershed Area and Rainfall Characteristics (유역면적과 강우특성변화에 따른 CHICAGO모형 매개변수의 민감도분석에 관한 연구)

  • Seo, Kyu Woo;Song, Il Jun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.74-81
    • /
    • 1999
  • In this study, the hydrological changes due to urbanization were investigated and fundamental theory and characteristics of typical urban runoff model such as CHICAGO Model was studied. Above model was applied for urbanizing Dongsucheon basin, Incheon. The main parameters(CI, CP, CS) which are included in this model depending on runoff results were determined, and dimensionless values such as total runoff ratio($Q_{TR}$), peak runoff ratio($Q_{PR}$), and runoff sensitivity ratio($Q_{SR}=Q_{TR}/Q_{PR}$) were estimated in order to evaluate and compare the characteristics of model based on relative sensitivity analysis. Finally, applied model was proposed based on understanding of work types and established urban runoff models which can simulate well for areal development patterns and urban river basin.

  • PDF

Analysis of Principal Storm Surge in the Downstream of Nakdong River (낙동강 하류역의 주요 폭풍해일고 검토)

  • Kim, Da-In;Kim, Kang-Min;Lee, Joong-Woo;Kwon, So-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.34-35
    • /
    • 2018
  • 낙동강 하류역은 최근의 퇴적우세 지형변화와 더불어, 기후변화에 따른 태풍강도 강화 등으로 인한 해일고 증가가 우려된다. 따라서, 과거 태풍자료를 수집 분석한 후 연구지역에 가장 큰 영향을 미친 태풍을 모델 태풍으로 선정하여 낙동강 하류역에 위치한 주요지점별 폭풍해일고 변화를 파악하였다. 실험결과, 최대 폭풍해일고는 태풍 매미 내습시에 나타났으며, 하단 매립지 전면에서 1.1~1.5m, 명지주거단지 전면에서 1.2~1.3m, 녹산국가산업단지 전면에서 1.3~1.5m로 하단 매립지 전면이 가장 크게 나타났다. 향후, 과거 지형변화를 고려한 폭풍해일고 검토를 통하여 최근의 급격한 지형변화로 인한 영향을 파악한 대비를 해야 할 것으로 사료된다.

  • PDF

A Laboratory Study for Settling Velocities of Cohesive Sediments Entering in Semi-closed Channel (준 폐수로로 유입되는 점착성 퇴적물의 침강속도 산정을 위한 실험적 연구)

  • Kim, Dong-Ho;Yang, Su-Hyun;Hwang, Kyu-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.5
    • /
    • pp.327-334
    • /
    • 2014
  • This study aims to estimate settling velocity ($W_s$) for cohesive sediments from water bodies (Incheon Coast, Kulpo Stream and Han River) mainly connected to the Kyeongin Ara-waterway through the laboratory settling experiments. Results of settling tests for these sediments show that $W_s$ values for sediments are quite different each other: $W_s$ values of Kulpo Stream sediments (0.01 < $W_s$ < 3.07 mm/s) are quite similar with those of Han River sediments (0.01 < $W_s$ < 2.97 mm/s) over the whole range of suspension concentration C (0.1 < C < 90 g/ L), while they are quite different with those for Incheon Coast sediments (0.01 < $W_s$ <0.92 mm/s). Qualitative analyses on test results for physico- chemical properties of sediments and waters with respect to settling velocities show that these differences in settling velocities are mainly due to the salinity difference in the water.

Prediction of Water Level at Downstream Site by Using Water Level Data at Upstream Gaging Station (상류 수위관측소 자료를 활용한 하류 지점 수위 예측)

  • Hong, Won Pyo;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.2
    • /
    • pp.28-33
    • /
    • 2020
  • Recently, the overseas construction market has been actively promoted for about 10 years, and overseas dam construction has been continuously performed. For the economic and safe construction of the dam, it is important to prepare the main dam construction plan considering the design frequency of the diversion tunnel and the cofferdam. In this respect, the prediction of river level during the rainy season is significant. Since most of the overseas dam construction sites are located in areas with poor infrastructure, the most efficient and economic method to predict the water level in dam construction is to use the upstream water level. In this study, a linear regression model, which is one of the simplest statistical methods, was proposed and examined to predict the downstream level from the upstream level. The Pyeongchang River basin, which has the characteristics of the upper stream (mountain stream), was selected as the target site and the observed water level in Pyeongchang and Panwoon gaging station were used. A regression equation was developed using the water level data set from August 22th to 27th, 2017, and its applicability was tested using the water level data set from August 28th to September 1st, 2018. The dependent variable was selected as the "level difference between two stations," and the independent variable was selected as "the level of water level in Pyeongchang station two hours ago" and the "water level change rate in Pyeongchang station (m/hr)". In addition, the accuracy of the developed equation was checked by using the regression statistics of Root Mean Square Error (RMSE), Adjusted Coefficient of Determination (ACD), and Nach Sutcliffe efficiency Coefficient (NSEC). As a result, the statistical value of the linear regression model was very high, so the downstream water level prediction using the upstream water level was examined in a highly reliable way. In addition, the results of the application of the water level change rate (m/hr) to the regression equation show that although the increase of the statistical value is not large, it is effective to reduce the water level error in the rapid level rise section. Accordingly, this is a significant advantage in estimating the evacuation water level during main dam construction to secure safety in construction site.

The Variation of Hydraulic Characteristics Depending upon Removal of the Hydraulic Structures near the Junction between Nam Han and Pyeong Chang Rivers (남한강과 평창강 합류부 주변의 수리구조물 제거에 따른 수리특성변화)

  • Choi, Gye-Woon;Yoon, Yong-Jin;Cho, Jun-Bum
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.675-689
    • /
    • 2005
  • In this paper, it was analyzed the variation of hydraulic characteristics through changing discharge at main channel and lateral channel and state of hydraulic structure at the natural channel junction by experiment. The experimental area is chosen at the channel junction of Nam-Han river and Pyeongchang river. The scale of the experiment is 1/200 in horizontal, and 1/66.7 in vortical, so the distoration rate is 3. From the experiment, the reduction effect of the water level is $12\%$ in the case of removing intank dam, and $5\%$ at the hydro-electronic dam removing case. Furthermore, in the case of two hydraulic structures removing, the reduction effect of water level is $18\%$ at the channel junction. Also, the stagnation zone, which is cased diminution of the channel at the junction, is decreasing through removing the structures.

Development of a diagnostic system to detect potato virus T using RT-PCR and nested PCR (감자T바이러스 검정을 위한 RT-PCR 및 Nested PCR 진단시스템 개발)

  • Lee, Si Won;Shin, Yong-Gil;Lee, Jin-Young;Kim, Young-Suk;Yang, Mi Hee;Choi, In-Cheol
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.2
    • /
    • pp.99-103
    • /
    • 2015
  • Potato virus T (PVT) is a plant pathogen in the family Betaflexiviridae, group IV single-stranded positive sense RNA viruses. The major host of PVT is potato, and it has been reported in Ullucus tuberosus, Oxalis tuberosa and Tropaeolum tuberosum. This study aimed at developing reverse transcription (RT)-polymerase chain reaction (PCR) and nested PCR techniques for specific detection of PVT. Finally, Two RT-PCR primer sets were developed and verified. The RT-PCR products were amplified to 734 (PVT RT-PCR primer set 6) and 828 bp (PVT RT-PCR primer set 29) long to detect PVT. The nested PCR primer sets [PVT-N70/C20 ($734{\rightarrow}315bp$) and PVT-N75/C30 ($828{\rightarrow}529bp$)] were developed which are high sensitivity and verification for detection of PVT. Furthermore, a modified-positive control plasmid is use to verify contamination of laboratory in PVT detection. This study supported the diagnose PVT in potato or PVT related hosts.

Increase of Recovery Ratio by Two Stage Membrane Process (the Pressurized PVDF Membrane Followed by Submerged PE Membrane) (PVDF 가압식과 PE 침지식 분리막을 결합한 2단 막여과 공정의 성능검토 및 회수율 증대 방안 연구)

  • Kim, Junhyeon;Mun, Baeksu;Jang, Hong-Jin;Kim, Jinho;Kim, Byungseok
    • Membrane Journal
    • /
    • v.23 no.1
    • /
    • pp.45-53
    • /
    • 2013
  • Membrane filtration processes are increasingly popular for drinking water treatment that requires high quality of water. But pre-treatment system (Coagulation/Flocculation/Sedimentation) requires increased footprint and installation cost. In addition, 5~10% of the concentrate are formed. In this study, the pressurized PVDF membrane (ECONITY Co., Ltd.) system was tested with surface water (Han River, South Korea) without pre-treatment. As a result, permeate flux was operated between 1 m/d and 2.4 m/d (at $25^{\circ}C$) without chemical cleaning for one year and membrane permeate turbidity was maintained stably under 0.05 NTU regardless of raw water turbidity. And we studied application of concetrate treatment of pressurized PVDF membrane by submerged PE membrane (ECONITY Co., Ltd.). As a result, we increased recovery of total treatment process to 99.5%.

Bar Morphological Changes for Navigation Route Design with Environmental Affinity in the Han River Estuary (한강하구 뱃길 개발을 위한 하구역 퇴적상 변동 조사)

  • Yang, Chan-Su;Park, Jin-Kyu
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.205-208
    • /
    • 2006
  • Based on SAR signatures for bars, bar transformation is investigated from 2000 to 2005, and monitoring of suspended-silt transportations from terrestrial runoff is tried to understand the morphology during the events of severe rain storm. SAR data did not reveal clearly the bar locations because of most of data acquisitions during high tides form 6.8 m to 9.0 m. Even though the problem, it could be said that in the estuary vegetated area and natural levees are developed well, but bars are shifted after an event like a flood. It is also showed that suspended solids such as silt transported through the estuary could contributed highly to a sedimentation environment around Incheon. A navigational route could be designed with a minimum width of about 200m.

  • PDF

A Study on Flow Characteristics according to Meandering Low Flow Channel Shape in the Compound Cross Section Typed Straight Channel (복단면인 직선수로 내 사행 저수로의 형태에 따른 흐름특성 연구)

  • Kim, Seonghwan;Choi, Gyewoon
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.484-490
    • /
    • 2017
  • In order to examine flow characteristics according to the shape of the meandering low flow channel in the compound cross section typed straight channel, we assumed the representative channel type in Korea and confirmed the validity of the 3D numerical simulation by carrying out the hydraulic model. Based on this study, numerical simulations were also conducted on other types of river channel. As a result of the numerical model test (using the velocity value measured by the water depth observation from the hydraulic model test), it was confirmed that the numerical simulation results are in good agreement with the numerical simulation results. As a result of analyzing the flow field according to the changes in the shape of the low flow channel, it was confirmed that the secondary flow examined in the previous studies occurred. Also, it was confirmed that the maximum flow velocity point moves according to the expansion cross sectional area of flow in high flow plain. Ultimately, it is thought that it is necessary to understand the position of the water impingement (which is an important factor in river design) and the extent of the impact because the change of the channel width affects the flow.

Development of Optimal Reservoir System Operation Model for Water Supply by Applying MIP Technique and Reappraisal of Water Supply Capability of Nakdong River Basin (MIP에 의한 댐군연계운영 최적화모형 개발과 개발 모형에 의한 낙동강수계 용수공급능력 재평가)

  • Choe, Yeong-Song;An, Gyeong-Su;Park, Myeong-Gi
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.4
    • /
    • pp.447-459
    • /
    • 2000
  • Since the development of water resources is getting more difficult than ever before because of human-sociological condition, it would be necessary to develop a practically applicable technique for the management of water resources based on demand-side concept that could reduce unusable release for more effective and appropriate allocation of limited water resources. The objective of the study is to develop an optimal reservoir system operation model for water supply and energy augmentation by the combination of water budget analysis method in downstream area by MIP technique. The applicable study of the developed model was carried out and water supply capability of Nakdong river basin was re-evaluated by the developed model. The model has been found successful to guarantee appropriate water supply to the basin by means of deficit-supply management method and also turned out to be more practical tool for an optimal reservoir system operation model than other existing models.

  • PDF