• Title/Summary/Keyword: Incheon river

Search Result 109, Processing Time 0.029 seconds

A Study on Removal of Organic Matter and Chromaticity from Urine Using Chemical Oxidization Process (화학적 산화공정을 이용하여 소변의 색도 및 유기물 처리를 통한 재이용 기술 연구)

  • Shin, Sung-Hoon;Jung, Jong-Tai;Cho, Yong-Chul
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.109-115
    • /
    • 2018
  • This study was conducted to solve the water shortage problem by reclaiming urine from homes or public places and using it as cleaning water for toilets. The process used in this experiment is a chemical oxidation process combining ozone, hydrogen peroxide, and UV. We set the key substance that is to be removed as chromaticity and conducted the experiment to remove it. If the quantity or concentration of injected ozone, UV, and hydrogen peroxide is insufficient, then the chromaticity will initially increase due to low oxidizing power, and will later decrease. In addition, the efficiency of removing chromaticity appeared to be higher, depending on the quantity of ozone injected, for medium concentrated urine than highly concentrated urine. However, the absolute quantity of removed chromaticity was about 68% higher for highly concentrated urine, when 16 g/hr of ozone was injected. The higher the pH level, the reaction time and efficiency of removing chromaticity were higher, and in normal conditions, in reference to a pH of 8.55, there was a 6% difference in efficiency between a pH level of 5.05 and a pH level of 10.12. Finally, when processing urine through an ozone-only process, COD decreased steadily over time, but DOC did not decrease. This is because ozone reacts selectively with organic matter.

Aggregate of Korea in 2022 (2022년 한국의 골재)

  • Sei Sun Hong;Jin Young Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.871-885
    • /
    • 2023
  • In 2022, the total of 129 million m3 of aggregate was produced in Korea, a slightly decrease from the total production of 2021. Of these, about 44 million m3 of sand and about 84 million m3 of gravel were produced. About 41% of total quantity of aggregates were produced by permission and the rest were produced after declaration. It estimated that of the 129 million m3 of aggregates in Korea in 2022, about 54.9% was produced by screening crushed aggregate, by 32.8% by forest aggregate, 2.2% by land aggregate, 6.2% by marine aggregate and 3.1% by washing aggregate, and 0.3% by river aggregate. This indicates that screening crushed and forest aggregate are the main producers of domestic aggregate in 2022. Leading producing metropolitan governments were Gyeonggi-do, Gyeongsangnam-do, Chungcheongnam-do, Incheon, Jeollanam-do, Chungcheongbuk-do, Gangwon-do, Gyeongsangbuk-do in order decreasing volume. In 2022, aggregates were produced in 147 local governments, and the 10 leading producing local governments were, in descending order of volume, Hwaseong, Pocheon, Paju, Ongjin, Youngin, Gwangju, west EEZ, Incheon Seo-gu, Namyangju, Asan. The combined production of the 10 leading local governments accounted for 31% of the national total. And 44 local governments have produced aggregates of more than 1 million m3 each other. In 148 local governments that produced aggregate, a total of 800 active operations produced aggregate with 350 operations by river, land and forest aggregate, 450 operations by selective crushed and washing aggregate.

Characteristics of Water Quality Parameters of Han River Related to THMs Formation in Water Treatment Plants in Seoul (서울시 정수장의 THMs 생성과 관련된 한강 원수의 주요 수질 특성 조사)

  • Lee, Jin-Hyo;Lee, Ki-Seon;Hwang, Dong-Hyun;Lee, Man-Ho;Han, Sun-Hee;Park, Yong-Sang;Lee, Mok-Young;Lee, Jin-Sook;Koo, Ja-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.12
    • /
    • pp.886-892
    • /
    • 2011
  • In a study on THMs formation at the distribution facilities in Seoul water supply for past 3 years from 2007 to 2009, THMs production was increased from inlet to outlet during the process in water treatment plant. However, such increased THMs amount was very small compared to THMs production formed after pre-chlorination and post chlorination. Accordingly, this study is aimed to investigate the characteristics of water quality parameters of Han River related to THMs formation in 6 water treatment plants in Seoul. The results showed that THMs and other factors such as temperature (r = 0.539~0.846) and turbidity (r = 0.421~0.863) had positive correlation while THMs had negative correlation with pH (r = -0.613~-0.800) and algae (r = -0.582~-0.901). There is no correlation between THMs and $NH_3-N$. According to the factor analysis, generally metabolite and organic matter factor $X_1$ (pH, BOD, algae), and seasonal and natural factor $X_2$ (temperature, turbidity) played an important role in the formation of THMs. Multiple regression analysis for THMs formation showed significance of regression appeared in most water systems.

The Regional Classification of Tidal Regime using Characteristics of Astronomical Tides, Overtides and Compound Tides in the Han River Estuary, Gyeonggi Bay (천문조, 배조 및 복합조 특성을 이용한 경기만 한강하구 구역별 조석체계 분류)

  • Yoon, Byung Il;Woo, Seung-Buhm;Kim, Jong Wook;Song, Jin Il
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.3
    • /
    • pp.149-158
    • /
    • 2015
  • In this study, we investigate tidal wave propagation characteristics, and classify regional tidal regime using tidal form number considered distribution of astronomical tide, overtides, and compound tides in the Han River Estuary, Gyeonggi Bay. The characteristics of the tidal wave propagation in main channels show dominance of major tidal constituents (e.g., $M_2$, $S_2$, $N_2$, $K_1$ and $O_1$) contributing to the astronomical tide however, distinct increasing of shallow water (e.g., $M_4$) and long period (e.g., $MS_f$) components toward up-estuary. Using the characteristics of tidal form number to astronomical tide, overtides, and compound tides, the regional tidal regime could be assorted into three regions. Firstly, a dominance area of astronomical tide was presented from open sea to a front of Incheon Harbor (Yeomha channel) and to north entrance of Seokmo channel. The area between south and north entrance of Yeomha channel and Ganghaw north channel classified into zone of showing strong shallow water components. It could be separated into upper estuary, upstream the Singok underwater dam, showed dominance of shallow overtides (e.g., $M_4$ and $MS_4$) water and long-term compound tides (e.g., $MS_f$) larger magnitude than astronomical tide. The shallow water components was earlier generated in lower part (south entrance) of Yeomha channel have strong bottom by effect of shallower and narrower compared with Seokmo channel. Tidal asymmetries of upper estuary cause by a development of overtides and compound tides are mainly controlled by influence of man-made structure.

Aggregate of Korea in 2021 (2021년도 국내 골재 수급 분석)

  • Sei Sun Hong;Jin Young Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.1
    • /
    • pp.87-101
    • /
    • 2023
  • The purpose of this study identifies the production of aggregate every year, and is to understand the supply and demend prospects. In 2021, the total of 135 million m3 of of aggregates was produced in Korea, a slightly increase from the total production of 2020. Of these, about 47 million m3 of sand and about 88 million m3 of gravel were produced. About 46% of total quantity of aggregates were produced with permission and the rest were aggregates produced after declaration. It estimated that of the 135 million m3 of aggregates in Korea in 2020, about 49.6% was produced by screening crushed aggregate, by 36.8% by forest aggregate, 2.6% by land aggregate, 6.8% by sea aggregate and 2.6% by washing each other, and 0.2% by river aggregate. This indicates that screening crushed aggregate and forest aggregate are the main product as in 2021. Leading producing metropolitan governments were Gyeonggi-do, Chungcheongnam-do, Incheon, Gyeongsangnam-do, Chungcheongbuk-do, Gangwon-do, Jeollanam-do, Gyeongsangbuk-do in order decreasing volume. In 2021, aggregates were produced in 148 local governments, and The 10 leading producing local governments were, in descending order of volume, Hwaseong, Ongjin, Paju, Pocheon, Gwangju, Youngin, Cheongju, Gimhae, Anseong, west EEZ. The combined production of the 10 leading local governments accounted for 30% of the national total, and. 47 local governments have produced aggregates of more than 1 million m3 each other. In 148 local governments that produced aggregate, a total of 805 active operations produced aggregate with 372 operations by river, land and forest aggregate, 433 operations by selective crushed and washing aggregate.

Geographic Variation of Body Color and Morphological Characteristics of Pale Chub, Zacco platypus (Cyprinidae, Pisces) (피라미, Zacco platypus (Cyprinidae, Pisces)의 체색과 형태의 지리적 변이)

  • Yoon, Hee Nam;Chae, Byung Soo;Bae, Yang Seop
    • Korean Journal of Ichthyology
    • /
    • v.24 no.3
    • /
    • pp.167-176
    • /
    • 2012
  • In comparison of the body color of Zacco platypys from Korea, it was found that there were significant differences among geographical populations in the color of upper eye, snout tip and anterior margin of pectoral fin. In individuals with red upper eye the snout tip was red but in those with black upper eye red color did not appeared on the snout tip. There was no difference between male and female in this characteristic and it was expressed uniformly within the same population. So we divided Z. platypus into two types by the color of upper eye; R type with red upper eye and B type with black upper eye. Red band on anterior margin of pectoral fins appeared in all males of both R and B type populations but in females it appeared only in B type individuals. The two types shown different distribution pattern in Korean Peninsula. R type distributed in almost whole area but B type distributed only in southeastern part of the peninsula: Nakdong, Hyeongsan, Taehwa, Suyeong and Jinjeon River. In analysis of external morphology among two types of Z. platypus from Korea and Z. platypus from Japan, there were no significant differences. But they were relatively well separated in discriminant function analysis.

Retrieval of Land SurfaceTemperature based on High Resolution Landsat 8 Satellite Data (고해상도 Landsat 8 위성자료기반의 지표면 온도 산출)

  • Jee, Joon-Bum;Kim, Bu-Yo;Zo, Il-Sung;Lee, Kyu-Tae;Choi, Young-Jean
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.171-183
    • /
    • 2016
  • Land Surface Temperature (LST) retrieved from Landsat 8 measured from 2013 to 2014 and it is corrected by surface temperature observed from ground. LST maps are retrieved from Landsat 8 calculate using the linear regression function between raw Landsat 8 LST and ground surface temperature. Seasonal and annual LST maps developed an average LST from season to annual, respectively. While the higher LSTs distribute on the industrial and commercial area in urban, lower LSTs locate in surrounding rural, sea, river and high altitude mountain area over Seoul and surrounding area. In order to correct the LST, linear regression function calculate between Landsat 8 LST and ground surface temperature observed 3 Korea Meteorological Administration (KMA) synoptic stations (Seoul(ID: 108), Incheon(ID: 112) and Suwon(ID: 119)) on the Seoul and surrounding area. The slopes of regression function are 0.78 with all data and 0.88 with clear sky except 5 cloudy pixel data. And the original Landsat 8 LST have a correlation coefficient with 0.88 and Root Mean Square Error (RMSE) with $5.33^{\circ}C$. After LST correction, the LST have correlation coefficient with 0.98 and RMSE with $2.34^{\circ}C$ and the slope of regression equation improve the 0.95. Seasonal and annual LST maps represent from urban to rural area and from commercial to industrial region clearly. As a result, the Landsat 8 LST is more similar to the real state when corrected by surface temperature observed ground.

A Study on the Field Application of Nays2D Model for Evaluation of Riverfront Facility Flood Risk (친수시설 홍수위험도 평가를 위한 Nays2D 모형의 현장 적용에 관한 연구)

  • Ku, Young Hun;Song, Chang Geun;Park, Yong-Sung;Kim, Young Do
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.579-588
    • /
    • 2015
  • Recent climage changes have resulted in increases in rainfall intensity and flood frequency as well as the risk of flood damage due to typhoons during the summer season. Water-friendly facilities such as ecological parks and sports facilities have been established on floodplains of rivers since the river improvement project was implemented and increases in the flood levels of rivers due to typhoons can lead to direct flood damage to such facilities. To analyze the hydraulic influence of these water-friendly facilities on floodplains or to evaluate their stability, numerical analysis should be performed in advance. In addition, it is crucial to address the drying and wetting processes generated by water level fluctuations. This study uses a Nays2D model, which analyzes drying and wetting, to examine its applicability to simple terrain in which such fluctuations occur and to natural rivers in which drying occurs. The results of applying this model to sites of actual typhoon events are compared with values measured at water level observatories. Through this comparison, it is determined that values of coefficient of determination ($R^2$), mean absolute error (MAE), and root-mean-square error (RMSE) are 0.988, 0.208, and 0.239, respectively, thus showing a statistically high correlation. In addition, the results are used to calculate flood risk indices for evaluation of such risk for water-friendly facilities constructed on floodplains.

A Study on the Simulation of Runoff Hydograph by Using Artificial Neural Network (신경회로망을 이용한 유출수문곡선 모의에 관한 연구)

  • An, Gyeong-Su;Kim, Ju-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.1
    • /
    • pp.13-25
    • /
    • 1998
  • It is necessary to develop methodologies for the application of artificial neural network into hydrologic rainfall-runoff process, although there is so much applicability by using the functions of associative memory based on recognition for the relationships between causes and effects and the excellent fitting capacity for the nonlinear phenomenon. In this study, some problems are presented in the application procedures of artificial neural networks and the simulation of runoff hydrograph experiences are reviewed with nonlinear functional approximator by artificial neural network for rainfall-runoff relationships in a watershed. which is regarded as hydrdologic black box model. The neural network models are constructed by organizing input and output patterns with the deserved rainfall and runoff data in Pyoungchang river basin under the assumption that the rainfall data is the input pattern and runoff hydrograph is the output patterns. Analyzed with the results. it is possible to simulate the runoff hydrograph with processing element of artificial neural network with any hydrologic concepts and the weight among processing elements are well-adapted as model parameters with the assumed model structure during learning process. Based upon these results. it is expected that neural network theory can be utilized as an efficient approach to simulate runoff hydrograph and identify the relationship between rainfall and runoff as hydrosystems which is necessary to develop and manage water resources.

  • PDF

Assessment of Apprehensive Area of Non-Point Source Pollution Using Watershed Model Application in Juam Dam Watershed (주암댐 유역 비점오염부하량 우심지역 평가를 통한 오염물질 저감시설 최적 설치지점 선정 연구)

  • Yi, Hye-Suk;Choi, Kwang soon;Chong, Suna;Lee, Seung-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.10
    • /
    • pp.551-557
    • /
    • 2015
  • This study analyzes potentially hazardous sub-watersheds from non-point source pollution areas using an HSPF model. The watershed of the Juam dam reservoir was divided into 29 sub-watersheds, and the flow, BOD, TN and TP concentration for the Juam dam watershed were evaluated from 2009 to 2012 using a watershed model, with a warming period from 2009 to 2010. The results of the watershed model agreed well with the flow and water quality field measurements. The calculated average non-point source loadings were BOD of 8.8 and $9.1kg/day/km^2$ in 2011 and 2012, respectively; TN of 9.7 and $10.1kg/day/km^2$ in 2011 and 2012, respectively; and TP of 0.30 and $0.33kg/day/km^2$ in 2011 and 2012, respectively. The non-point source loading of the Bonghwa stream watershed was calculated, and predominantly assessed upstream of the Boseong river. Additionally, the Miryeok, Jangpyeong, Yuleo, Guam, Seokgyo, Mundeok, Incheon, and Bongnae stream watersheds, with extensive agricultural areas, were assessed to be potentially hazardous areas in terms of non-point source management. In this study, HSPF model was applied in order to aid in the selection of non-point source reduction facilities for the Juam dam watershed, where they were evaluated as to whether they would be applicable for non-point source management.