• 제목/요약/키워드: Inception-v3

검색결과 81건 처리시간 0.037초

이미지와 텍스트 정보의 카테고리 분류에 의한 SNS 팔로잉 추천 방법 (Recommendation Method of SNS Following to Category Classification of Image and Text Information)

  • 홍택은;신주현
    • 스마트미디어저널
    • /
    • 제5권3호
    • /
    • pp.54-61
    • /
    • 2016
  • 다양한 스마트 디바이스의 발전에 따라 거리, 공간의 제약 없이 실시간으로 의사소통, 정보공유 등이 가능한 SNS(Social Network Service)를 즐기는 사용자(User)가 증가하고 있다. 의사소통, 관계 형성에 중점을 두었던 SNS 사용자들이 정보공유의 기능으로 SNS를 활용하는 추세이다. 본 논문에서는 사용자의 SNS 게시글을 이용하여 카테고리를 추출하고 정보제공자(Information provider)를 팔로잉 추천해주는 방법을 기술한다. 게시글의 텍스트에서 단어를 분류하고 빈도수를 측정하며, 머신 러닝 기법 중 하나인 CNN(Convolutional Neural Network)을 바탕으로 구축한 Inception-v3 모델을 이용하여 이미지를 단어로 분류한다. 텍스트와 이미지에서 분류한 단어를 DMOZ 기준으로 카테고리 분류하여 정보제공자 DB를 구축한다. 정보제공자 DB의 카테고리와 게시글에서 분류한 사용자의 카테고리를 비교한다. 카테고리가 일치할 경우 카테고리에 분류되어 있는 정보 제공자들를 대상으로 유사도를 측정하여 가장 비슷한 정보제공자의 계정을 추천해주는 방법에 대해 제안한다.

기계학습을 이용한 얼굴 인식을 위한 최적 프로그램 적용성 평가에 대한 연구 (A Study on the Evaluation of Optimal Program Applicability for Face Recognition Using Machine Learning)

  • 김민호;조기용;유희원;이정렬;백운배
    • 한국인공지능학회지
    • /
    • 제5권1호
    • /
    • pp.10-17
    • /
    • 2017
  • This study is the first attempt to raise face recognition ability through machine learning algorithm and apply to CRM's information gathering, analysis and application. In other words, through face recognition of VIP customer in distribution field, we can proceed more prompt and subdivided customized services. The interest in machine learning, which is used to implement artificial intelligence, has increased, and it has become an age to automate it by using machine learning beyond the way that a person directly models an object recognition process. Among them, Deep Learning is evaluated as an advanced technology that shows amazing performance in various fields, and is applied to various fields of image recognition. Face recognition, which is widely used in real life, has been developed to recognize criminals' faces and catch criminals. In this study, two image analysis models, TF-SLIM and Inception-V3, which are likely to be used for criminal face recognition, were selected, analyzed, and implemented. As an evaluation criterion, the image recognition model was evaluated based on the accuracy of the face recognition program which is already being commercialized. In this experiment, it was evaluated that the recognition accuracy was good when the accuracy of the image classification was more than 90%. A limit of our study which is a way to raise face recognition is left as a further research subjects.

딥러닝 기반 교량 구성요소 자동 분류 (Automatic Classification of Bridge Component based on Deep Learning)

  • 이재혁;박정준;윤형철
    • 대한토목학회논문집
    • /
    • 제40권2호
    • /
    • pp.239-245
    • /
    • 2020
  • 최근 BIM (Building Information Modeling)이 건설 산업계에서 폭넓게 활용되고 있다. 하지만 과거에 시공이 된 구조물에 경우 대부분 BIM이 구축되어 있지 않다. BIM이 구축되지 않은 구조물의 경우, 카메라로부터 얻은 2D 이미지에 SfM (Structure from Motion) 기법을 활용하면 3D 모델의 점군 데이터(Point cloud)를 생성하고 BIM을 구축할 수 있다. 하지만 이렇게 생성된 점군 데이터는 의미론적 정보가 포함되어 있지 않기 때문에, 수작업으로 구조물의 어떤 요소인지 분류해 주어야 한다. 따라서 본 연구에서는 구조물 구성요소를 분류하는 과정을 자동화하기 위하여 딥러닝을 적용하였다. 딥러닝 네트워크 구축에는 CNN (Convolutional Neural Network) 구조의 Inception-ResNet-v2를 사용하였고, 전이학습을 통하여 교량 구조물의 구성요소를 학습하였다. 개발된 시스템을 검증하기 위하여 수집한 데이터를 이용하여 구성요소를 분류한 결과, 교량의 구성요소를 96.13 %의 정확도로 분류할 수 있었다.

OP Code 특징 기반의 텍스트와 이미지 데이터셋 연구를 통한 인공지능 백신 개발 (Development of Vaccine with Artificial Intelligence: By Analyzing OP Code Features Based on Text and Image Dataset)

  • 최효경;이세은;이주현;홍래영;최원혁;김형종
    • 정보보호학회논문지
    • /
    • 제29권5호
    • /
    • pp.1019-1026
    • /
    • 2019
  • 지속적으로 새롭게 등장하는 악성 파일(malware)탐지의 어려움으로 인해 머신러닝 기반 인공지능 백신 개발의 중요성이 크게 대두되고 있다. 하지만 현존하는 인공지능 백신은 파일의 일부 영역만을 검사하기 때문에 탐지율이 떨어진다는 단점이 존재한다. 이에 본 논문에서는 독자적인 로직을 기반으로 개발한 인공지능 백신에 근거하여, 파일 내 전체 데이터를 검사하는 방법을 제안한다. 그 중 정상 파일과 비교했을 때 악성 파일에만 존재하는 unique한 함수에서 추출한 OP Code 특징을 학습 데이터셋으로 한 진단법 강화 방안을 제시한다. 해당 강화법의 성능을 Random Forest 알고리즘을 기반으로 한 CSV 데이터셋 학습과 Inception V3 모델을 기반으로 한 이미지 데이터셋 학습으로 나누어 테스트해본 결과, 약 80%의 탐지율을 도출하는 것을 확인할 수 있었다.

심층 학습을 통한 암세포 광학영상 식별기법 (Identification of Multiple Cancer Cell Lines from Microscopic Images via Deep Learning)

  • 박진형;최세운
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.374-376
    • /
    • 2021
  • 임상에서 암 관련 질병의 확진을 위해 영상장비를 이용한 기초 진단 이후 추가적인 방법으로 생체검사 등을 이용한 병리적 검사가 필수적이다. 이러한 생체검사를 진행하기 위해서는 전문지식을 가진 종양학자, 임상병리사 등의 도움과 최소한의 소요시간은 확진을 위해 반드시 필요하다. 최근 들어, 인공지능을 활용한 암세포의 자동분류가 가능한 시스템 구축에 관련된 연구가 활발하게 진행되고 있다. 하지만, 이전 연구들은 한정된 알고리즘을 기반으로 하여 세포의 종류와 정확도에 한계를 보인다. 본 연구에서 심층 학습의 일종인 합성곱 신경망을 통해 총 4가지의 암세포를 식별하는 방법을 제안한다. 세포 배양을 통해 얻은 광학영상을 OpenCV를 사용하여 세포의 위치 식별 및 이미지 분할과 같은 전처리 수행 후, EfficientNet을 통해 학습하였다. 모델은 EfficientNet을 기준으로 다양한 hyper parameter를 사용하고, InceptionV3을 학습하여 성능을 비교분석 하였다. 그 결과 96.8%의 높은 정확도로 세포를 분류하는 결과를 보였으며, 이러한 분석방법은 암의 확진에 도움이 될 것으로 기대한다.

  • PDF

고온초전도 케이블의 전기절연 설계 및 시험평가 (Electrical Insulation Design and Experimental Results of a High-Tc Superconducting Cable)

  • 곽동순;천현권;최재형;김해종;조전욱;김상현
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권12호
    • /
    • pp.640-645
    • /
    • 2006
  • A 22.9kV/50MVA class high temperature superconducting(HTS) power cable system was developed in Korea. For the optimization of electrical insulation design for a HTS cable, it is necessary to investigate the ac breakdown impulse breakdown and partial discharge inception stress of the liquid nitrogen/laminated polypropylene paper(LPP) composite insulation system. They were used to insulation design of the model cable for a 22.9kV class HTS power cable and the model cable was manufactured. The insulation test of the manufactured model cable was evaluated in various conditions and was satisfied standard technical specification in Korea. Base on these experimental data, the single and 3 phase HTS cable of a prototype were manufactured and verified.

이미지와 메타데이터를 활용한 CNN 기반의 악성코드 패밀리 분류 기법 (Malware Classification Schemes Based on CNN Using Images and Metadata)

  • 이송이;문봉교;김준태
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.212-215
    • /
    • 2021
  • 본 논문에서는 딥러닝의 CNN(Convolution Neural Network) 학습을 통하여 악성코드를 실행시키지 않고서 악성코드 변종을 패밀리 그룹으로 분류하는 방법을 연구한다. 먼저 데이터 전처리를 통해 3가지의 서로 다른 방법으로 악성코드 이미지와 메타데이터를 생성하고 이를 CNN으로 학습시킨다. 첫째, 악성코드의 byte 파일을 8비트 gray-scale 이미지로 시각화하는 방법이다. 둘째, 악성코드 asm 파일의 opcode sequence 정보를 추출하고 이를 이미지로 변환하는 방법이다. 셋째, 악성코드 이미지와 메타데이터를 결합하여 분류에 적용하는 방법이다. 이미지 특징 추출을 위해서는 본고에서 제안한 CNN을 통한 학습 방식과 더불어 3개의 Pre-trained된 CNN 모델을 (InceptionV3, Densnet, Resnet-50) 사용하여 전이학습을 진행한다. 전이학습 시에는 마지막 분류 레이어층에서 본 논문에서 선택한 데이터셋에 대해서만 학습하도록 파인튜닝하였다. 결과적으로 가공된 악성코드 데이터를 적용하여 9개의 악성코드 패밀리로 분류하고 예측 정확도를 측정해 비교 분석한다.

SVM on Top of Deep Networks for Covid-19 Detection from Chest X-ray Images

  • Do, Thanh-Nghi;Le, Van-Thanh;Doan, Thi-Huong
    • Journal of information and communication convergence engineering
    • /
    • 제20권3호
    • /
    • pp.219-225
    • /
    • 2022
  • In this study, we propose training a support vector machine (SVM) model on top of deep networks for detecting Covid-19 from chest X-ray images. We started by gathering a real chest X-ray image dataset, including positive Covid-19, normal cases, and other lung diseases not caused by Covid-19. Instead of training deep networks from scratch, we fine-tuned recent pre-trained deep network models, such as DenseNet121, MobileNet v2, Inception v3, Xception, ResNet50, VGG16, and VGG19, to classify chest X-ray images into one of three classes (Covid-19, normal, and other lung). We propose training an SVM model on top of deep networks to perform a nonlinear combination of deep network outputs, improving classification over any single deep network. The empirical test results on the real chest X-ray image dataset show that deep network models, with an exception of ResNet50 with 82.44%, provide an accuracy of at least 92% on the test set. The proposed SVM on top of the deep network achieved the highest accuracy of 96.16%.

DC 코로나 방전이 적용된 에틸렌 정상 확산 화염의 Soot 배출 저감 (Reduction of Soot Emitted from a $C_2$$H_4$ Normal Diffusion Flame with Application of DC Corona Discharge)

  • 이재복;황정호
    • 대한기계학회논문집B
    • /
    • 제25권4호
    • /
    • pp.496-506
    • /
    • 2001
  • The effect of corona discharge on soot emission was experimentally investigated. Size and number concentrations of soot aggregates were measured and compared for various voltages. Regardless of the polarity of the applied voltage, the flame length decreased and the tip of flame spreaded with increasing voltage. For the experimental conditions selected, the flame was blown off toward the ground electrode by corona ionic wind. When the negative applied voltage was greater than 3kV(for electrode spacing = 3.5cm), soot particles in inception or growth region were affected by the corona discharge, resulting in the reduction of number concentration. The results show that the ionic wind favored soot oxidation and increased flame temperature. Number concentration and primary particle size greatly increased, when the corona electrodes were located the region of soot nucleation or growth(close to burner mouth).

구강암 조기발견을 위한 영상인식 시스템 (Image Recognition System for Early Detection of Oral Cancer)

  • 에드워드 카야디;송미화
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.309-311
    • /
    • 2022
  • Oral cancer is a type of cancer that has a high possibility to be cured if it is threatened earlier. The convolutional neural network is very popular for being a good algorithm for image recognition. In this research, we try to compare 4 different architectures of the CNN algorithm: Convnet, VGG16, Inception V3, and Resnet. As we compared those 4 architectures we found that VGG16 and Resnet model has better performance with an 85.35% accuracy rate compared to the other 3 architectures. In the future, we are sure that image recognition can be more developed to identify oral cancer earlier.