• Title/Summary/Keyword: Inception Network

Search Result 79, Processing Time 0.027 seconds

Recommendation Method of SNS Following to Category Classification of Image and Text Information (이미지와 텍스트 정보의 카테고리 분류에 의한 SNS 팔로잉 추천 방법)

  • Hong, Taek Eun;Shin, Ju Hyun
    • Smart Media Journal
    • /
    • v.5 no.3
    • /
    • pp.54-61
    • /
    • 2016
  • According to many smart devices are development, SNS(Social Network Service) users are getting higher that is possible for real-time communicating, information sharing without limitations in distance and space. Nowadays, SNS users that based on communication and relationships, are getting uses SNS for information sharing. In this paper, we used the SNS posts for users to extract the category and information provider, how to following of recommend method. Particularly, this paper focuses on classifying the words in the text of the posts and measures the frequency using Inception-v3 model, which is one of the machine learning technique -CNN(Convolutional Neural Network) we classified image word. By classifying the category of a word in a text and image, that based on DMOZ to build the information provider DB. Comparing user categories classified in categories and posts from information provider DB. If the category is matched by measuring the degree of similarity to the information providers is classified in the category, we suggest that how to recommend method of the most similar information providers account.

A Study on the Optimal Convolution Neural Network Backbone for Sinkhole Feature Extraction of GPR B-scan Grayscale Images (GPR B-scan 회색조 이미지의 싱크홀 특성추출 최적 컨볼루션 신경망 백본 연구)

  • Park, Younghoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.385-396
    • /
    • 2024
  • To enhance the accuracy of sinkhole detection using GPR, this study derived a convolutional neural network that can optimally extract sinkhole characteristics from GPR B-scan grayscale images. The pre-trained convolutional neural network is evaluated to be more than twice as effective as the vanilla convolutional neural network. In pre-trained convolutional neural networks, fast feature extraction is found to cause less overfitting than feature extraction. It is analyzed that the top-1 verification accuracy and computation time are different depending on the type of architecture and simulation conditions. Among the pre-trained convolutional neural networks, InceptionV3 are evaluated as most robust for sinkhole detection in GPR B-scan grayscale images. When considering both top-1 verification accuracy and architecture efficiency index, VGG19 and VGG16 are analyzed to have high efficiency as the backbone for extracting sinkhole feature from GPR B-scan grayscale images. MobileNetV3-Large backbone is found to be suitable when mounted on GPR equipment to extract sinkhole feature in real time.

A Study on Autonomous Cavitation Image Recognition Using Deep Learning Technology (딥러닝 기술을 이용한 캐비테이션 자동인식에 대한 연구)

  • Ji, Bahan;Ahn, Byoung-Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.105-111
    • /
    • 2021
  • The main source of underwater radiated noise of ships is cavitation generated by propeller blades. After the Cavitation Inception Speed (CIS), noise level at all frequencies increases severely. In determining the CIS, it is based on the results observed with the naked eye during the model test, however accuracy and consistency of CIS values are becoming practical issues. This study was carried out with the aim of developing a technology that can automatically recognize cavitation images using deep learning technique based on a Convolutional Neural Network (CNN). Model tests on a three-dimensional hydrofoil were conducted at a cavitation tunnel, and tip vortex cavitation was strictly observed using a high-speed camera to obtain analysis data. The results show that this technique can be used to quantitatively evaluate not only the CIS, but also the amount and rate of cavitation from recorded images.

Optimized Deep Learning Techniques for Disease Detection in Rice Crop using Merged Datasets

  • Muhammad Junaid;Sohail Jabbar;Muhammad Munwar Iqbal;Saqib Majeed;Mubarak Albathan;Qaisar Abbas;Ayyaz Hussain
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.57-66
    • /
    • 2023
  • Rice is an important food crop for most of the population in the world and it is largely cultivated in Pakistan. It not only fulfills food demand in the country but also contributes to the wealth of Pakistan. But its production can be affected by climate change. The irregularities in the climate can cause several diseases such as brown spots, bacterial blight, tungro and leaf blasts, etc. Detection of these diseases is necessary for suitable treatment. These diseases can be effectively detected using deep learning such as Convolution Neural networks. Due to the small dataset, transfer learning models such as vgg16 model can effectively detect the diseases. In this paper, vgg16, inception and xception models are used. Vgg16, inception and xception models have achieved 99.22%, 88.48% and 93.92% validation accuracies when the epoch value is set to 10. Evaluation of models has also been done using accuracy, recall, precision, and confusion matrix.

Predicting Brain Tumor Using Transfer Learning

  • Mustafa Abdul Salam;Sanaa Taha;Sameh Alahmady;Alwan Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.73-88
    • /
    • 2023
  • Brain tumors can also be an abnormal collection or accumulation of cells in the brain that can be life-threatening due to their ability to invade and metastasize to nearby tissues. Accurate diagnosis is critical to the success of treatment planning, and resonant imaging is the primary diagnostic imaging method used to diagnose brain tumors and their extent. Deep learning methods for computer vision applications have shown significant improvements in recent years, primarily due to the undeniable fact that there is a large amount of data on the market to teach models. Therefore, improvements within the model architecture perform better approximations in the monitored configuration. Tumor classification using these deep learning techniques has made great strides by providing reliable, annotated open data sets. Reduce computational effort and learn specific spatial and temporal relationships. This white paper describes transfer models such as the MobileNet model, VGG19 model, InceptionResNetV2 model, Inception model, and DenseNet201 model. The model uses three different optimizers, Adam, SGD, and RMSprop. Finally, the pre-trained MobileNet with RMSprop optimizer is the best model in this paper, with 0.995 accuracies, 0.99 sensitivity, and 1.00 specificity, while at the same time having the lowest computational cost.

Deep Learning Model for Classification of Multiple Cancer Cell Lines (암세포 영상분류를 위한 심층학습 모델 연구)

  • Park, Jinhyung;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.394-396
    • /
    • 2021
  • Additional pathological tests using imaging equipment are essential before diagnosing cancer cells. Recently, in order to reduce the need for time and human resources in these fields, research related to the establishment of a system capable of automatic classification of cancer cells using artificial intelligence is being actively conducted. However, in both previous studies, there were relatively limited deep learning algorithms and cell types, and limitations existed with low accuracy at the same time. In this study, a method of performing 4class Classification on four types of cancer cells through the Convolution Neral Network, a type of in-depth learning. EfficientNet, ResNet, and Inception were used, and finally Resnet was used to obtain an accuracy of 96.11 on average for k-fold.

  • PDF

Grading of Harvested 'Mihwang' Peach Maturity with Convolutional Neural Network (합성곱 신경망을 이용한 '미황' 복숭아 과실의 성숙도 분류)

  • Shin, Mi Hee;Jang, Kyeong Eun;Lee, Seul Ki;Cho, Jung Gun;Song, Sang Jun;Kim, Jin Gook
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.270-278
    • /
    • 2022
  • This study was conducted using deep learning technology to classify for 'Mihwang' peach maturity with RGB images and fruit quality attributes during fruit development and maturation periods. The 730 images of peach were used in the training data set and validation data set at a ratio of 8:2. The remains of 170 images were used to test the deep learning models. In this study, among the fruit quality attributes, firmness, Hue value, and a* value were adapted to the index with maturity classification, such as immature, mature, and over mature fruit. This study used the CNN (Convolutional Neural Networks) models for image classification; VGG16 and InceptionV3 of GoogLeNet. The performance results show 87.1% and 83.6% with Hue left value in VGG16 and InceptionV3, respectively. In contrast, the performance results show 72.2% and 76.9% with firmness in VGG16 and InceptionV3, respectively. The loss rate shows 54.3% and 62.1% with firmness in VGG16 and InceptionV3, respectively. It considers increasing for adapting a field utilization with firmness index in peach.

Automatic Classification of Bridge Component based on Deep Learning (딥러닝 기반 교량 구성요소 자동 분류)

  • Lee, Jae Hyuk;Park, Jeong Jun;Yoon, Hyungchul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.239-245
    • /
    • 2020
  • Recently, BIM (Building Information Modeling) are widely being utilized in Construction industry. However, most structures that have been constructed in the past do not have BIM. For structures without BIM, the use of SfM (Structure from Motion) techniques in the 2D image obtained from the camera allows the generation of 3D model point cloud data and BIM to be established. However, since these generated point cloud data do not contain semantic information, it is necessary to manually classify what elements of the structure. Therefore, in this study, deep learning was applied to automate the process of classifying structural components. In the establishment of deep learning network, Inception-ResNet-v2 of CNN (Convolutional Neural Network) structure was used, and the components of bridge structure were learned through transfer learning. As a result of classifying components using the data collected to verify the developed system, the components of the bridge were classified with an accuracy of 96.13 %.

A Study on Image Generation from Sentence Embedding Applying Self-Attention (Self-Attention을 적용한 문장 임베딩으로부터 이미지 생성 연구)

  • Yu, Kyungho;No, Juhyeon;Hong, Taekeun;Kim, Hyeong-Ju;Kim, Pankoo
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.63-69
    • /
    • 2021
  • When a person sees a sentence and understands the sentence, the person understands the sentence by reminiscent of the main word in the sentence as an image. Text-to-image is what allows computers to do this associative process. The previous deep learning-based text-to-image model extracts text features using Convolutional Neural Network (CNN)-Long Short Term Memory (LSTM) and bi-directional LSTM, and generates an image by inputting it to the GAN. The previous text-to-image model uses basic embedding in text feature extraction, and it takes a long time to train because images are generated using several modules. Therefore, in this research, we propose a method of extracting features by using the attention mechanism, which has improved performance in the natural language processing field, for sentence embedding, and generating an image by inputting the extracted features into the GAN. As a result of the experiment, the inception score was higher than that of the model used in the previous study, and when judged with the naked eye, an image that expresses the features well in the input sentence was created. In addition, even when a long sentence is input, an image that expresses the sentence well was created.

An Optimized Deep Learning Techniques for Analyzing Mammograms

  • Satish Babu Bandaru;Natarajasivan. D;Rama Mohan Babu. G
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.39-48
    • /
    • 2023
  • Breast cancer screening makes extensive utilization of mammography. Even so, there has been a lot of debate with regards to this application's starting age as well as screening interval. The deep learning technique of transfer learning is employed for transferring the knowledge learnt from the source tasks to the target tasks. For the resolution of real-world problems, deep neural networks have demonstrated superior performance in comparison with the standard machine learning algorithms. The architecture of the deep neural networks has to be defined by taking into account the problem domain knowledge. Normally, this technique will consume a lot of time as well as computational resources. This work evaluated the efficacy of the deep learning neural network like Visual Geometry Group Network (VGG Net) Residual Network (Res Net), as well as inception network for classifying the mammograms. This work proposed optimization of ResNet with Teaching Learning Based Optimization (TLBO) algorithm's in order to predict breast cancers by means of mammogram images. The proposed TLBO-ResNet, an optimized ResNet with faster convergence ability when compared with other evolutionary methods for mammogram classification.