• Title/Summary/Keyword: Inbred Lines

Search Result 238, Processing Time 0.026 seconds

Genetic and Agronomic Analysis of a Recombinant Inbred Line Population to Map Quantitative Trait Loci for Blast Resistance and Select Promising Lines in Rice (벼 RIL집단의 유전 분석과 농업형질 분석을 통한 도열병 저항성 QTL 탐색 및 유망계통 선발)

  • Ha, Su-Kyung;Jeung, Ji-Ung;Jeong, Jong-Min;Kim, Jinhee;Mo, Youngjun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.3
    • /
    • pp.172-181
    • /
    • 2020
  • Koshihikari has been one of the most popular rice cultivars with good eating quality since the 1960s despite its susceptibility to blast disease and lodging. To map the genes controlling blast resistance and to develop promising blast-resistant breeding lines inheriting Koshihikari's high eating quality, a recombinant inbred line (RIL) population was developed from a cross between Koshihikari and a blast resistance donor with early maturity, Baegilmi. A total of 394 Koshihikari × Baegilmi RILs (KBRIL), and the two parents, were evaluated for blast resistance and major agronomic traits including heading date, culm length, panicle length, and tiller number. A linkage map encompassing 1,272.7 cM was constructed from a subset of the KBRIL (n = 142) using 130 single nucleotide polymorphisms. Two quantitative trait loci (QTL) for blast resistance, qBL1.1 harboring Pish/Pi35 and qBL2.1 harboring Pib, were mapped onto chromosomes 1 and 2, respectively. qBL1.1 was detected in both of the experimental sites, Namwon and Jeonju, while qBL2.1 was only detected in Namwon. qBL1.1 and qBL2.1 did not affect agronomic traits, including heading date, culm length, panicle length, and tiller number. From the 394 KBRILs, lines that were phenotypically similar to Koshihikari were selected according to heading date and culm length and were further divided into the following two groups based on blast resistance: Koshishikari-type blast resistant lines (KR, n = 15) and Koshishikari-type blast susceptible lines (KS, n = 15). Although no significant differences were observed in the major agronomic traits between the two groups, the KR group produced a greater mean head rice ratio than the KS group. The present study provides useful materials for developing blast-resistant cultivars that inherit both Koshihikari's high eating quality and Baegilmi's blast resistance.

Rusty-Root Tolerance and Chemical Components in 4-year old Ginseng Superior Lines (4년생 인삼계통의 적변내성 및 화학성분 특성)

  • Lee Sung-Sik;Lee Myong-Gu;Choi Kwang-Tae
    • Journal of Ginseng Research
    • /
    • v.23 no.2 s.54
    • /
    • pp.61-66
    • /
    • 1999
  • Experiments were carried out to examine the rusty tolerance in 61 inbred lines of ginseng cultivated in field, and chemical components were analyzed to clarify the difference between healthy and rusty ginseng roots. Among them, 10 lines showed rusty tolerance (RT) while 10 lines showed rusty sensitivity (RS). The content of phenolic compound in RT was lower than that in RS in cortex, epidermis and branch & fine roots, but it was not difference between RT and RS in stele. The contents of K, Ca, Na in RT were lower than RS in cortex, and the content of Mg, Fe, Na, Mn, AI, Si in RT were lower than RS in epidermis, and the content of Fe in RT were lower than RS in branch & fine roots, but mineral contents were not difference between RT and RS in stele. The content of phenolic compound in healthy cortex was lower than that in rusty cortex in same 6-year roots, but the mineral contents were not difference between healthy and rusty cortex in same 6-year roots. In root of seedlings, the contents of phenolic compound, K and Na in RT were lower than RS. It was suggested that the contents of phenolic compound, K and Na might be marker to select rusty tolerance ginseng lines.

  • PDF

Characterization and Utilization of the Clubroot Resistant Genes in Chinese Cabbage (Brassica rapa L.)

  • Hatakeyama, Katsunori
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.33-33
    • /
    • 2015
  • Clubroot disease is the major threat to the production of Chinese cabbage (Brassica rapa L.) in Japan. Although the breeding of the clubtoot resistant (CR) cultivars is one of the most efficient ways to control this disease, the CR cultivars do not always have effects due to the breakdown of resistance. Therefore, it is necessary to develop the breeding strategy to accumulate multiple CR genes in a single cultivar effectively. We have identified two incomplete dominant CR loci, Crr1 and Crr2, which are originated from the European CR turnip Siloga. To investigate the effectiveness of marker-assisted selection (MAS) for CR breeding, the inbred line with Crr1 and Crr2 was crossed with parental lines of the existing CR $F_1$ cultivar of Chinese cabbage, followed by 5 times of MAS and backcrossing. The $F_1$ derived from a cross between the resulting parental lines improved the clubroot resistance as expected and had the same morphological characters as the original $F_1$ cultivar. We have shown that the Crr1 locus comprised two loci: Crr1a, which by itself conferred resistance to the mild isolate; and Crr1b, which had a minor effect, but was not required for Crr1a-mediated resistance. Further genetic analysis suggested that Crr1b was necessary to acquire resistance to the more virulent isolate in combination with Crr2. Molecular characterization of Crr1a encoding TIR-NB-LRR class of R protein revealed that there were at least 4 alleles in Japanese CR cultivars of Chinese cabbage. PCR analysis with Crr1a-specific markers demonstrated that the functional alleles were predicted to be present in European CR turnips, Debra and 77b besides Siloga, whereas rarely in Japanese CR cultivars, indicating that Crr1a is an useful source to improve the resistance of Chinese cabbage cultivars.

  • PDF

Development of AFLP and STS Markers Related to Stay Green Trait in Multi-Tillered Maize

  • Jang Cheol Seong;Lee Hee Bong;Seo Yong Weon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.4
    • /
    • pp.358-362
    • /
    • 2004
  • In order to develop molecular markers related to stay green phenotype, AFLP analysis was conducted using near-isogenic lines for either stay green or non stay green trait. Both lines have characteristics of multi-ear and tillers (MET). Two out of 64 primer combinations of selective amplification identified three reproducible polymorphic fragments in MET corn with stay green. Both of E+AGC/M+CAC and E+AAG/M+CAA primer combinations produced two and one specific polymorphic fragments linked to stay green trait, respectively. For the conversion of AFLPs to sequence tag sites (STSs), primers were designed form both end sequences of each two polymorphic fragments. One fragment, which was amplified with E+AAG/M+CAA primer combinations, possessed 298 bp long and showed a $91\%$ homology with maize retrotransposon Cinful-l. One out of two polymorphic fragments produced with E+AGC/M+CAC primer combination had 236 bp long and matched a $96\%$ homology with an intron region of 22kDa alpha zein gene cluster in Zea mays. One out of two PCR fragments amplified with MET2 primer set in the stay green MET was not produced in the non-stay green MET. The developed AFLP and STS marker could be used as an efficient tool for selection of the stay green trait in the MET inbred.

Isozymic Characteristics of Multiple-Ear and Tiller Maize Lines (다수다얼성 옥수수의 동위효소 특성)

  • ;Bong-Ho Chae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.1
    • /
    • pp.16-23
    • /
    • 1987
  • This experiment was conducted to determine the isozymic differences between normal maize and maize inbreds of multiple ears and tillers (MET). Two maize inbreds Euisung, Iri and their hybrid having tillers and multiple ears were compared with normal maize. With usual electrophoresis using 6% polyacrylamide gel, peroxidase and esterase enzymes were studied. Matured leaf, culm, leaf sheath, root and young ear tissues showed different isozymic patterns between METs and normal maize in peroxidase. The Euisung inbred grown for 7 days under dark condition showed typical peroxidase. bands compared with checks in the tissues of coleoptile and stele. Better observation of isozymic bands was made during early part of maize growth. Parental inbreds showed more active and apparent band differences than their hybrids in esterase. Bands for esterase were also apparently different in the stele, coleoptile and young ear tissues of the METs and the checks. The maize lines infected with black streaked dwarf virus showed obvious differences in peroxidase and esterase isozymes.

  • PDF

Virulence Differentiation of Eight Turnip mosaic virus Isolates Infecting Cruciferous Crops

  • Choi, Hong-Soo;Sohn, Seong-Han;Yoon, Moo-Kyoung;Cheon, Jeong-Uk;Kim, Jeong-Soo;Were, Hassan Karakacha;Cho, Jang-Kyung;Kim, Kook-Hyung;Takanami, Yoichi
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.369-376
    • /
    • 2005
  • Turnip mosaic virus (TuMV) is an infectious viral pathogen on the cruciferous crops, predominantly Chinese cabbage (Brassica campestris subsp. pekinensis) and radish (Raphanus sativus). On the basis of the symptom development in selective differential hosts from indicator host species, Chinese cabbage and Korean radish inbred lines, the representative eight isolates of TuMV were divided into two major groups/or six types. Group I includes Th 1, Ca-ad7, and Cj-ca2-1 isolates, while group II includes the other isolates (rg-pfl, r 9-10, Rhcql-2, Stock and Mustard). According to the molecular phylogenetic analysis, these isolates, however, divided into two groups and two independent isolates. Phylogenetic analysis indicated that four isolates (Tu 1, r9-10, Stock and Rh-cql-2) formed a distinct phylogenetic group, and the other two isolates (Ca-ad7 and Cj-ca2-1) also formed another group. Mustard and rg-pfl isolates did not seem to have any relationship with these two groups. Taken together, these results indicated that virulence differentiation on host plants, molecular phylogenetic analysis of the nucleotide and the deduced amino acid of TuMV coat proteins did not show any relationship. The multi-resistant lines, Wonyae 20026 and BP058 in Chinese cabbage represent valuable genetic materials that can be used for crucifer breeding programs on TuMV resistance, but not in Korean radish.

Application of SCAR markers to self-incompatibility genotyping in breeding lines of radish (Raphanus sativus L.)

  • Chung, Hee;Kim, Su;Park, HanYong;Kim, Ki-Taek
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.397-402
    • /
    • 2009
  • Self-incompatibility (SI) prevents self-fertilization by inhibiting the pollen tube growth of self-pollen. Molecular analysis has revealed that the S locus comprises a number of genes, such as the S-locus glycoprotein (SLG), the S-locus receptor kinase (SRK), and SP11 (SCR). Although molecular markers related to those genes have been developed, a simple S-haplotype detecting method has not been reported due to the highly polymorphic and relatively small coding regions. In this study, the sequence characterized amplified region (SCAR) markers were used to establish an efficient radish genotyping method. We identified the S-haplotypes of 192 radish accessions using 19 different markers, which proved to be highly reliable. The accessions were assigned to 17 types of S-haplotypes, including 8 types of SRKs and 9 types of SLGs. Since the developed SCAR markers are based on their gene sequences, we could easily identify the S-haplotypes by a single specific band, with the highest frequencies detected for SLG 5, SRK 1, and SLG 1, in order. Among the tested markers, the SLG 1, SRK 1, and SRK 5 markers exhibited high reliability, compared to phenotypic results. Furthermore, we identified the seven types of unreported SLGs using SLG Class -I and -II specific markers. Although the developed SCAR markers still need to be improved for the genotyping of all S-haplotypes, these markers could be helpful for monitoring inbred lines, and for developing the MAS in radish breeding programs.

Current Status of Plasmodiophora brassicae Researches in Korea

  • Kim, Hong Gi;Lim, Yong Pyo
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.29-29
    • /
    • 2015
  • Clubroot disease is caused by the soil-born obligate plant pathogen Plasmodiophora brassicae. This pathogen can infect all cruciferous vegetables and oil crops, including Brassica rapa, B. oleracea, B. napus, and other Brassica species. Clubroot disease is now considered to be a major problem in Chinese cabbage production in China, Korea, and Japan. We collected several hundreds of P. brassicae infected galls from Korea, and isolated the single spore from the collection. For establishment of novel isolation, and mass-propagation methods for singe spore isolates of P. brassicae pathogen, we developed new filtration method using both cellulose nitrate filter and syringe filter. Accurate detection of P. brassicae pathogen in the field was done by using real-time PCR in the potential infested soil. When we tested the different pathogenicity on commercial Chinese cabbage varieties, P. brassicae from collected galls showed various morphological patterns about clubroot symptom on roots. To date, 8 CR loci have been identified in the B. rapa genome using the quantitative trait loci (QTL) mapping approach, with different resistant sources and isolates. We are trying to develop the molecular marker systems for detect all 8 CR resistant genes. Especially for the study on the interaction between pathogens and CR loci which are not well understood until now, genome wide association studies are doing using the sequenced inbred lines of Chinese cabbage to detect the novel CR genes.

  • PDF

Quantitative trait loci controlling the amino acid content in rice (Oryza sativa L.)

  • Yoo, Soo-Cheul
    • Journal of Plant Biotechnology
    • /
    • v.44 no.4
    • /
    • pp.349-355
    • /
    • 2017
  • The amino acid composition of rice is a major concern of rice breeders because amino acids are among the most important nutrient components in rice. In this study, a genetic map was constructed with a population of 134 recombinant inbred lines (RILs) from a cross between Dasanbyeo (Tongil-type indica) and TR22183 (temperate japonica), as a means to detect the main and epistatic effect quantitative trait loci (QTLs) for the amino acid content (AAC). Using a linkage map which covered a total of 1458 cM based on 239 molecular marker loci, a total of six main-effect QTLs (M-QTLs) was identified for the content of six amino acids that were mapped onto chromosome 3. For all the M-QTLs, the TR22183 allele increased the trait values. The QTL cluster (flanked by id3015453 and id3016090) on chromosome 3 was associated with the content of five amino acids. The phenotypic variation, explained by the individual QTLs located in this cluster, ranged from 10.2 to 12.4%. In addition, 26 epistatic QTLs (Ep-QTLs) were detected and the 25 loci involved in this interaction were distributed on all nine chromosomes. Both the M-QTLs and Ep-QTLs detected in this study will be useful in breeding programs which target the development of rice with improved amino acid composition.

Molecular Cloning of Chicken Major Histocompatibility Complex Class II Molecules

  • Sung, Aree-Moon
    • Toxicological Research
    • /
    • v.8 no.2
    • /
    • pp.331-342
    • /
    • 1992
  • The chicken major histocompatibility complex (MHC), the B complex, is beginning to be analyzed at the DNA level. Inbred lines of chickens have been reported to possess 3~5 MHC class II genes. To further analyzed the molecular structure of the chicken MHC class II genes, cDNA clones coding for chicken MHC class II (B-L) ${\beta}$ chain molecules were isolated from chicken spleen and liver. Tissue-specific transcription of B-L ${\beta}$genes was studied by Northern blot analysis. A high level of expression was detected for spleen poly(A)$^+$ RNA whereas a faint signal was detected for liver poly(A)$^+$ RNA. Twenty-nine cDNA clones were isolated from the spleen and eight cDNA clones were isolated from the liver. Based on restriction maps, most clones could be clustered into one family of genes. Four cDNA clones were sequenced (S7, S10 and S19 from the spleen and L1, which was identical to S19, from the liver). Complete amino acid sequences of B-L ${\beta}$ chain molecules were predicated from the nucleotide sequences of the cDNA clones. Although both the nature and the location of the conserved residues were similar in chicken and mammalian sequences, some species-specific differences were found, suggesting that the structures of the B-L molecules are similar, but not identical to their mammalian counterparts.

  • PDF