• Title/Summary/Keyword: InGaAs pHEMT

Search Result 101, Processing Time 0.016 seconds

16-QAM-Based Highly Spectral-Efficient E-band Communication System with Bit Rate up to 10 Gbps

  • Kang, Min-Soo;Kim, Bong-Su;Kim, Kwang Seon;Byun, Woo-Jin;Park, Hyung Chul
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.649-654
    • /
    • 2012
  • This paper presents a novel 16-quadrature-amplitude-modulation (QAM) E-band communication system. The system can deliver 10 Gbps through eight channels with a bandwidth of 5 GHz (71-76 GHz/81-86 GHz). Each channel occupies 390 MHz and delivers 1.25 Gbps using a 16-QAM. Thus, this system can achieve a bandwidth efficiency of 3.2 bit/s/Hz. To implement the system, a driver amplifier and an RF up-/down-conversion mixer are implemented using a $0.1{\mu}m$ gallium arsenide pseudomorphic high-electron-mobility transistor (GaAs pHEMT) process. A single-IF architecture is chosen for the RF receiver. In the digital modem, 24 square root raised cosine filters and four (255, 239) Reed-Solomon forward error correction codecs are used in parallel. The modem can compensate for a carrier-frequency offset of up to 50 ppm and a symbol rate offset of up to 1 ppm. Experiment results show that the system can achieve a bit error rate of $10^{-5}$ at a signal-to-noise ratio of about 21.5 dB.