• Title/Summary/Keyword: InAs quantum dots

Search Result 276, Processing Time 0.024 seconds

Electrical Property in InAn/GaAs Quantum Dot Infrared Photodetector with Hydrogen Plasma Treatment (수소화 처리된 InAs/GaAs 양자점 적외선 수광소자의 전기적 특성)

  • Nam H.D.;Song J.D.;Choi W.J.;Cho W.J.;Lee J.I.;Choe J.W.;Yang H.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.2
    • /
    • pp.216-222
    • /
    • 2006
  • In this paper, we investigated the effect of hydrogen-plasma (H-plasma) treatment on the electrical and optical properties of a quantum dot infrared photodetector (QDIP) with a 5-stacked InAs dots in an InGaAs/GaAs well structure and $Al_{0.3}Ga_{0.7}As/GaAs$ SL (superlattice) current blocking layer. It has been observed that H-plasma treatment didn't affect the band structure of QDIP. It has been also observed that the H-plasma treatment on the QDIP not only enhance the electrical property of QDIP by curing the defect channels in $Al_{0.3}Ga_{0.7}As/GaAs$ SL but also introduce defects in QDIP structure. The H-plasma treatment for 10 min with 20 W of RF power provided the lowest dark current, which made it possible to measure the photo-current (PC) of QDIP whose PC was not detectable without the H-plasma treatment due to the high dark current.

Photoinduced Electron- and Energy-Transfer Processes in Supramolecules using Imide Compounds

  • Fujitsuka, Mamoru;Majima, Tetsuro
    • Rapid Communication in Photoscience
    • /
    • v.3 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • We summarize recent studies on photoinduced electron- and energy-transfer processes of various supramolecules including imide group(s) as a component. Recently, imides have been employed in various functional molecular systems, because of their excellent photophysical and electron accepting properties. Our research group also employed imides in various supramolecular systems such as donor-acceptor dyads, quantum dots, DNA, and so on. First, we summarize fundamental properties of imides such as photophysical and electrochemical properties. Then, photoinduced processes of imides in the supramolecular systems are described to show their applicability in the various fields.

Down-Conversion Effect Applied to GaAs p-i-n Single Junction Solar Cell

  • Park, Jun-Seo;Kim, Ji-Hun;Go, Hyeong-Deok;Lee, Gi-Yong;Kim, Jeong-Hyeok;Han, Il-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.694-694
    • /
    • 2013
  • With the growing need of more effective energy harvesting, solar energy has been sought as one of the prominent candidates among the eco-friendly methods. Although many types of solar cells have been developed, the electronic conversion efficiency is limited by the material's physical properties: solar cells can only harvest solar energy from limited range in solar energy spectrum. To overcome this physical limit, we approached by using the down conversion effect, transforming the high energy photons to low energy photons, to the range the designated solar cell can convert to electronic energy. In our study, we have fabricated GaAs single junction solar cells and applied CdSe quantum dots for down-conversion. We examine the effects of such application on the solar cell efficiancy, fill-factor, JSC, VOC, etc.

  • PDF

Recent Developments in Quantum Dot Patterning Technology for Quantum Dot Display (양자점 디스플레이 제작을 위한 양자점 패터닝 기술발전 동향)

  • Yeong Jun Jin;Kyung Jun Jung;Jaehan Jung
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.169-179
    • /
    • 2024
  • Colloidal quantum dot (QDs) have emerged as a crucial building block for LEDs due to their size-tunable emission wavelength, narrow spectral line width, and high quantum efficiency. Tremendous efforts have been dedicated to improving the performance of quantum dot light-emitting diodes (QLEDs) in the past decade, primarily focusing on optimization of device architectures and synthetic procedures for high quality QDs. However, despite these efforts, the commercialization of QLEDs has yet to be realized due to the absence of suitable large-scale patterning technologies for high-resolution devices., This review will focus on the development trends associated with transfer printing, photolithography, and inkjet printing, and aims to provide a brief overview of the fabricated QLED devices. The advancement of various quantum dot patterning methods will lead to the development of not only QLED devices but also solar cells, quantum communication, and quantum computers.

Design of 808nm GRIN-SCH Quantum Dot Laser Diode (808nm GRIN-SCH 양자점 레이저 다이오드 설계)

  • Chan, Trevor;Son, Sung-Hun;Kim, Kyoung-Chan;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.131-131
    • /
    • 2010
  • The power of semiconductor laser diodes has been limited primarily by the heating effects which occur at high optical intensities. The actual limiting event can take one of a number of forms such as. catastrophic optical damage or filamentation. A general approach to this problem is to design a heterostructure which creates a high powered output while maintaining low internal optical intensities. A graded index separate confinement heterostructure (GRIN-SCH) is one such structure that accomplishes the above task. Here, the active region is sandwiched between graded index layers where the index of refraction increases nearer to the active layer. This structure has been shown to yield a high efficiency due to the confinement of both the optical power and carriers, thereby reducing the optical intensity required to achieve higher powers. The optical confinement also reinforces the optical beam quality against high power effects. Quantum dots have long been a desirable option for laser diodes due to the enhanced optical properties associated with the zeroth dimensionality. In our work, we use PICS3D software created by Crosslight Software Inc. to simulate the performance of In0.67A10.33As/A10.2Ga0.8AsquantumdotsusedwithaGRIN-SCH. The simulation tools are used to optimize the GRIN-SCH structure for high efficiency and optical beam quality.

  • PDF

Light-emitting Diodes based on a Densely Packed QD Film Deposited by the Langmuir-Blodgett Technique (랭뮤어-블롯젯을 통해 형성된 고밀도 양자점 박막과 이를 기반으로 한 발광다이오드)

  • Rhee, Seunghyun;Jeong, Byeong Guk;Roh, Jeongkyun
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.249-254
    • /
    • 2022
  • To achieve high-performance colloidal quantum dot light-emitting diodes (QD-LEDs), the use of a densely packed QD film is crucial to prevent the formation of leakage current pathways and increase in interface resistance. Spin coating is the most common method to deposit QDs; however, this method often produces pinholes that can act as short-circuit paths within devices. Since state-of-the-art QD-LEDs typically employ mono- or bi-layer QDs as an emissive layer because of their low conductivities, the use of a densely packed and pinhole-free QD film is essential. Herein, we introduce the Langmuir-Blodgett (LB) technique as a deposition method for the fabricate densely packed QD films in QD-LEDs. The LB technique successfully transfers a highly dense monolayer of QDs onto the substrate, and multilayer deposition is performed by repeating the transfer process. To validate the comparability of the LB technique with the standard QD-LED fabrication process, we fabricate and compare the performance of LB-based QD-LEDs to that of the spin-coating-based device. Owing to the non-destructiveness of the LB technique, the electroluminescence efficiency of the LB-based QD-LEDs is similar to that of the standard spin coating-based device. Thus, the LB technique is promising for use in optoelectronic applications.

Molecular Linker Enhanced Assembly of CdSe/ZnS Core-Shell Quantum Dots (분자 끈을 활용한 CdSe/ZnS 양자 점의 향상된 배열)

  • Cho, Geun Tae;Lee, Jong Hyeon;Nam, Hye Jin;Jung, Duk Young
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1081-1086
    • /
    • 2008
  • QDs-LEDs(quantum dot light emitting device) should contain well-organized arrays of QDs on an electron transport layer. Thin films of CdSe/ZnS core-shell QDs were successfully fabricated on $TiO_2$ substrates by using PDMS stamp and micro contact printing method. 2-Carboxyethylphosphonic acid(CAPO) and 1,6-hexanedithiol(HDT) were employed as molecular linkers in assembling CdSe/ZnS core-shell QDs with high-density and uniform array. The CAPO increased the binding strength between the QDs and the substrates, and the HDT induced the strong inter-particle attractions of assembled QDs. The assembling properties of QDs thin films were characterized by SEM, AFM, optical microscope and photoluminescence spectroscope(PL).

Synthesis and Functionalization of Upconversion Nanoparticles for Bioimaging (바이오 이미징을 위한 업컨버전 나노입자(upconversion nanoparticles)의 합성 및 특성화)

  • Cho, Hye In;Lee, Jae-Seung
    • Ceramist
    • /
    • v.21 no.3
    • /
    • pp.270-282
    • /
    • 2018
  • The increasing importance of biomedical imaging technology has led to the development of a variety of luminescent materials, including molecular fluorophores, fluorescent proteins, and quantum dots. Owing to their inherent disadvantages, such as insufficient chemical stability and limited biocompatability, their utilization has been limited with imaging only under highly optimized and controlled conditions. Recently, a new class of luminescent nanoparticles, upconversion nanoparticles (UCNPs), have been emerging as a practically useful nanoprobe for various bioimaging applications. The detailed synthesis, functionalization, properties and in-vitro / in-vivo applications of the UCNPs are introduced and discussed in this Review.

Electronic Structure and Elemental Composition of the Lead Sulfide Colloidal Quantum Dots Depending on the Types of Ligand and Post-Treatment (리간드 종류와 후처리 공정에 따른 황화납 콜로이드 양자점 박막의 전자 구조 및 원소 조성 분석)

  • Kim, Tae Gun;Choi, Hyekyoung;Jeong, Sohee;Kim, Jeong Won
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.6
    • /
    • pp.402-409
    • /
    • 2016
  • Thin films of lead sulfide colloidal quantum dots (CQDs) of 2.8 nm in diameter are fabricated and their surfaces are passivated by 3-mercaptopropionic acid (MPA) ligand or hybrid type ($MPA+CdCl_2$) ligand, respectively. The changes in valence band electronic structure and atomic composition of each PbS CQD film upon post-treatment such as air, N2 annealing or UV/Ozone have been studied by photoelectron spectroscopy. The air annealing makes the CQD fermi level to move toward the valence band leading to "p-type doping" regardless of ligand type. The UV/Ozone post-treatment generates $Pb(OH)_2$, $PbSO_x$ and PbO on both CQD surfaces. But the amount of the PbO has been reduced in hybrid type ligand case, especially. That is probably because the extra Pb cations in (111) surface are additionally passivated by $Cl_2$ ligand, which limits the reaction between the Pb cation and ozone.