Browse > Article
http://dx.doi.org/10.5012/jkcs.2016.60.6.402

Electronic Structure and Elemental Composition of the Lead Sulfide Colloidal Quantum Dots Depending on the Types of Ligand and Post-Treatment  

Kim, Tae Gun (Korea Research Institute of Standards and Science (KRISS))
Choi, Hyekyoung (Korea institute of Machinery and Materials (KIMM))
Jeong, Sohee (Korea institute of Machinery and Materials (KIMM))
Kim, Jeong Won (Korea Research Institute of Standards and Science (KRISS))
Publication Information
Abstract
Thin films of lead sulfide colloidal quantum dots (CQDs) of 2.8 nm in diameter are fabricated and their surfaces are passivated by 3-mercaptopropionic acid (MPA) ligand or hybrid type ($MPA+CdCl_2$) ligand, respectively. The changes in valence band electronic structure and atomic composition of each PbS CQD film upon post-treatment such as air, N2 annealing or UV/Ozone have been studied by photoelectron spectroscopy. The air annealing makes the CQD fermi level to move toward the valence band leading to "p-type doping" regardless of ligand type. The UV/Ozone post-treatment generates $Pb(OH)_2$, $PbSO_x$ and PbO on both CQD surfaces. But the amount of the PbO has been reduced in hybrid type ligand case, especially. That is probably because the extra Pb cations in (111) surface are additionally passivated by $Cl_2$ ligand, which limits the reaction between the Pb cation and ozone.
Keywords
Colloidal quantum dot; Hybrid ligand; Electronic structure; Composition analysis; Ozone treatment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dong, Q.; Liao, W.; Wang, B.; Liu, Z. RSC Adv. 2015, 5, 33869.   DOI
2 Sykora, M.; Koposov, A. Y.; McGuire, J. A.; Schulze, R. K.; Tretiak, O.; Pietryga, J. M.; Klimov, V. I. ACS Nano 2010, 4, 2021.   DOI
3 Malgras, V.; Nattestad, A.; Yamauchi, Y.; Dou, S. X.; Kim, J. H. Nanoscale 2015, 7, 5706.   DOI
4 Kim, T. G.; Seo, S. W.; Kwon, H.; Hahn, J.; Kim, J. W. Phys. Chem. Chem. Phys. 2015, 17, 24342.   DOI
5 Vig, J. R. J. Vac. Sci. Technol., A 1985, 3, 1027.   DOI
6 Evans, S.; Raftery, E. J. Chem. Soc., Faraday Trans.1 1982, 78, 3545.   DOI
7 Cao, Y.; Stavrinadis, A.; Lasanta, T.; So, D.; Konstantatos, G. Nature Energy 2016, 1, 16035.   DOI
8 Zherebetskyy, D.; Scheele, M.; Zhang, Y.; Bronstein, N.; Thompson, C.; Britt, D.; Salmeron, M.; Alivisatos, P.; Wang, L.-W. Science 2014, 344, 1380.   DOI
9 Gonella, G.; Cavalleri, O.; Terreni, S.; Cvetko, D.; Floreano, L.; Morgante, A.; Canepa, M.; Rolandi, R. Surf. Sci. 2004, 566, 638.
10 Zherebetskyy, D.; Zhang, Y.; Salmeron, M.; Wang, L. W. J. Phys. Chem. Lett. 2015, 6, 4711.   DOI
11 Cant, D. J.; Syres, K. L.; Lunt, P. J.; Radtke, H.; Treacy, J.; Thomas, P. J.; Lewis, E. A.; Haigh, S. J.; O'Brien, P.; Schulte, K.; Bondino, F.; Magnano, E.; Flavell, W. R. Langmuir 2015, 31, 1445.   DOI
12 Stavrinadis, A.; Xu, S.; Warner, J. H.; Hutchison, J. L.; Smith, J. M.; Watt, A. A. Nanotechnology 2009, 20, 445608.   DOI
13 Fang, C.; van Huis, M. A.; Vanmaekelbergh, D.; Zandbergen, H. W. ACS Nano 2010, 4, 211.   DOI
14 Ning, Z.; Molnar, M.; Chen, Y.; Friberg, P.; Gan, L.; Agren, H.; Fu, Y. Phys. Chem. Chem. Phys. 2011, 13, 5848.   DOI
15 Ip, A. H.; Thon, S. M.; Hoogland, S.; Voznyy, O.; Zhitomirsky, D.; Debnath, R.; Levina, L.; Rollny, L. R.; Carey, G. H.; Fischer, A.; Kemp, K. W.; Kramer, I. J.; Ning, Z.; Labelle, A. J.; Chou, K. W.; Amassian, A.; Sargent, E. H. Nat Nanotechnol 2012, 7, 577.   DOI
16 Huang, J.; Xu, B.; Yuan, C.; Chen, H.; Sun, J.; Sun, L.; Agren, H. ACS Appl. Mater. Interfaces 2014, 6, 18808.   DOI
17 Turyanska, L.; Elfurawi, U.; Li, M.; Fay, M. W.; Thomas, N. R.; Mann, S.; Blokland, J. H.; Christianen, P. C.; Patane, A. Nanotechnology 2009, 20, 315604.   DOI
18 Zhao, N.; Osedach, T. P.; Chang, L.-Y.; Geyer, S. M.; Wanger, D.; Binda, M. T.; Arango, A. C.; Bawendi, M. G.; Bulovic, V. ACS Nano 2010, 4, 3743.   DOI
19 Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X.; Debnath, R.; Cha, D.; Chou, K. W.; Fischer, A.; Amassian, A.; Asbury, J. B.; Sargent, E. H. Nat. Mater. 2011, 10, 765.   DOI
20 Choi, H.; Ko, J. H.; Kim, Y. H.; Jeong, S. J. Am. Chem. Soc. 2013, 135, 5278.   DOI
21 Moreels, I.; Lambert, K.; Smeets, D.; De Muynck, D.; Nollet, T.; Martins, J. C.; Vanhaecke, F.; Vantomme, A.; Delerue, C.; Allan, G.; Hens, Z. ACS Nano 2009, 3, 3023.   DOI
22 Kwon, K. C.; Dong, W. J.; Jung, G. H.; Ham, J.; Lee, J.-L.; Kim, S. Y. Sol. Energy Mater. Sol. Cells 2013, 109, 148.   DOI
23 Kim, S. Y. J. Appl. Phys. 2004, 95, 2560.   DOI
24 Bohm, M. L.; Jellicoe, T. C.; Rivett, J. P. H.; Sadhanala, A.; Davis, N. J. L. K.; Morgenstern, F. S. F.; Gödel, K. C.; Govindasamy, J.; Benson, C. G. M.; Greenham, N. C.; Ehrler, B. J. Phys. Chem. Lett. 2015, 6, 3510.   DOI
25 Brown, P. R.; Kim, D.; Lunt, R. R.; Zhao, N.; Bawendi, M. G.; Grossman, J. C.; Bulovic, V. ACS Nano 2014, 8, 5863.   DOI
26 Kim, J. Y.; Voznyy, O.; Zhitomirsky, D.; Sargent, E. H. Adv. Mater. 2013, 25, 4986.   DOI
27 Kramer, I. J.; Sargent, E. H. Chem. Rev. 2014, 114, 863.   DOI
28 Ning, Z.; Voznyy, O.; Pan, J.; Hoogland, S.; Adinolfi, V.; Xu, J.; Li, M.; Kirmani, A. R.; Sun, J. P.; Minor, J.; Kemp, K. W.; Dong, H.; Rollny, L.; Labelle, A.; Carey, G.; Sutherland, B.; Hill, I.; Amassian, A.; Liu, H.; Tang, J.; Bakr, O. M.; Sargent, E. H. Nat. Mater. 2014, 13, 822.   DOI
29 Crisp, R. W.; Kroupa, D. M.; Marshall, A. R.; Miller, E. M.; Zhang, J.; Beard, M. C.; Luther, J. M. Sci. Rep. 2015, 5, 9945.   DOI
30 Huang, P.-R.; He, Y.; Cao, C.; Lu, Z.-H. NPG Asia Mater. 2013, 5, e57.   DOI
31 Choi, M.-J.; Oh, J.; Yoo, J.-K.; Choi, J.; Sim, D. M.; Jung, Y. S. Energy Environ. Sci. 2014, 7, 3052.   DOI
32 Konstantatos, G.; Levina, L.; Fischer, A.; Sargent, E. H. Nano Lett. 2008, 8, 1446.   DOI
33 Tang, J.; Brzozowski, L.; Barkhouse, D. A. R.; Wang, X.; Debnath, R.; Wolowiec, R.; Palmiano, E.; Levina, L.; Pattantyus- Abraham, A. G.; Jamakosmanovic, D.; Sargent, E. H. ACS Nano 2010, 4, 869.   DOI
34 Xu, F.; Gerlein, L.; Ma, X.; Haughn, C.; Doty, M.; Cloutier, S. Materials 2015, 8, 1858.   DOI
35 Yeh, J. J.; Lindau, I. At. Data Nucl. Data Tables 1985, 32, 1.   DOI
36 Kim, T. G.; Choi, H.; Jeong, S.; Kim, J. W. J. Phys. Chem. C 2014, 118, 27884.   DOI
37 Zhai, G.; Bezryadina, A.; Breeze, A. J.; Zhang, D.; Alers, G. B.; Carter, S. A. Appl. Phys. Lett. 2011, 99, 063512.   DOI
38 Klem, E. J. D.; Shukla, H.; Hinds, S.; MacNeil, D. D.; Levina, L.; Sargent, E. H. Appl. Phys. Lett. 2008, 92, 212105.   DOI
39 Klein, A.; Korber, C.; Wachau, A.; Sauberlich, F.; Gassenbauer, Y.; Harvey, S. P.; Proffit, D. E.; Mason, T. O. Materials 2010, 3, 4892.   DOI
40 Ng, T.-W.; Chan, C.-Y.; Lo, M.-F.; Guan, Z. Q.; Lee, C.- S. J. Mater. Chem. A 2015, 3, 9081.   DOI
41 Baltrusaitis, J.; Chen, H.; Rubasinghege, G.; Grassian, V. H. Environ. Sci. Technol. 2012, 46, 12806.   DOI