• Title/Summary/Keyword: InAs 양자점

Search Result 407, Processing Time 0.027 seconds

Face Recognition using Vector Quantizer in Eigenspace (아이겐공간에서 벡터 양자기를 이용한 얼굴인식)

  • 임동철;이행세;최태영
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.185-192
    • /
    • 2004
  • This paper presents face recognition using vector quantization in the eigenspace of the faces. The existing eigenface method is not enough for representing the variations of faces. For making up for its defects, the proposed method use a clustering of feature vectors by vector quantization in eigenspace of the faces. In the trainning stage, the face images are transformed the points in the eigenspace by eigeface(eigenvetor) and we represent a set of points for each people as the centroids of vector quantizer. In the recognition stage, the vector quantizer finds the centroid having the minimum quantization error between feature vector of input image and centriods of database. The experiments are performed by 600 faces in Faces94 database. The existing eigenface method has minimum 64 miss-recognition and the proposed method has minimum 20 miss-recognition when we use 4 codevectors. In conclusion, the proposed method is a effective method that improves recognition rate through overcoming the variation of faces.

Technical Trend and Challenging Issues for Quantum Computing Control System (양자컴퓨터 제어 기술)

  • Jeong, Y.H.;Choi, B.S.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.87-96
    • /
    • 2021
  • Quantum computers will be a game-changer in various fields, such as cryptography and new materials. Quantum computer is quite different from the classical computer by using quantum-mechanical phenomena, such as superposition, entanglement, and interference. The main components of a quantum computer can be divided into quantum-algorithm, quantum-classical control interface, and quantum processor. Universal quantum computing, which can be applied in various industries, is expected to have more than millions of qubits with high enough gate accuracy. Currently, It uses general-purpose electronic equipment, which is placed in a rack, at room temperature to make electronic signals that control qubits. However, implementing a universal quantum computer with a low error rate requires a lot of qubits demands the change of the current control system to be an integrated and miniaturized system that can be operated at low temperatures. In this study, we explore the fundamental units of the control system, describe the problems and alternatives of the current control system, and discuss a future quantum control system.

Quantum Secure Direct Community using Time Lag (시간지연을 이용한 양자비밀직접통신)

  • Rim, Kwang-cheol;Lim, Dong-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2318-2324
    • /
    • 2017
  • Quantum cryptography, which is emerging as a next generation password, is being studied by quantum cryptographic transfer protocols and quantum secret communication. Quantum key transfer protocol can be used in combination with the modern password because of the inefficiency of the use of the password, or the use of OTP(one time password). In this paper an algorithm for direct communication by means of direct cryptographic communications rather than quantum keys. The method of implementing quantum secure direct community was adopted using 2-channel methods using Einstein gravity field. Two channels were designed to adopt a quantum secret communication protocol that applies time delay between 2-channels of channel to apply time difference between 2-channels. The proposed time delay effect reflects the time delay by reflecting the gravitational lensing phenomenon. Gravity generator with centrifugal acceleration is incorporated in the viscometer, and the time delay using this implies the correlation between the variance of the metametry.