Face Recognition using Vector Quantizer in Eigenspace

아이겐공간에서 벡터 양자기를 이용한 얼굴인식

  • Published : 2004.09.01

Abstract

This paper presents face recognition using vector quantization in the eigenspace of the faces. The existing eigenface method is not enough for representing the variations of faces. For making up for its defects, the proposed method use a clustering of feature vectors by vector quantization in eigenspace of the faces. In the trainning stage, the face images are transformed the points in the eigenspace by eigeface(eigenvetor) and we represent a set of points for each people as the centroids of vector quantizer. In the recognition stage, the vector quantizer finds the centroid having the minimum quantization error between feature vector of input image and centriods of database. The experiments are performed by 600 faces in Faces94 database. The existing eigenface method has minimum 64 miss-recognition and the proposed method has minimum 20 miss-recognition when we use 4 codevectors. In conclusion, the proposed method is a effective method that improves recognition rate through overcoming the variation of faces.

본 논문은 얼굴의 아이겐공간에서 벡터 양자화 기법을 이용한 얼굴 인식을 제안한다. 아이겐페이스 방법의 문제점은 하나의 아이겐페이스로 얼굴의 다양한 변이를 표현하기에 부족하다는데 있다. 이러한 약점을 극복하기위해 제안된 방법은 아이겐페이스 공간에서 얼굴의 변이를 벡터 양자화 기법으로 군집화한다. 벡터 양자기는 학습과정을 통해 각 사람의 아이겐 페이스 집합을 양자화된 대표점들로 표현한다. 그리고 인식 과정을 통해 벡터 양자기는 얼굴 데이터 베이스에 저장된 대표점들과 입력된 얼굴 특징벡터와의 양자화 오차를 최소로 하는 대표점을 찾는다. 실험은 Faces94 데이터베이스에서 600장의 얼굴을 가지고 수행하였다. 실험 결과 기존의 아이겐페이스 방법은 최소 64개의 오인식을 하였고 제안된 방법은 코드북의 크기를 4개로 하였을 때 최소 20개의 오인식을 보였다. 결론적으로 제안된 방법은 얼굴의 변이를 수용하여 인식률을 향상시키는 효과적인 방법으로 사료된다.

Keywords

References

  1. J. Zang, Y. Yan, and M. Lades, 'Face recognition: Eigenface, elastic matching, and neural nets,' Proc. IEEE, vol. 85, no. 9, pp. 1423-1435, 1997 https://doi.org/10.1109/5.628712
  2. R. Chellappa, C.Wilson, and S.Sirohey, 'Human and machine recognition of faces: A survey.'Proc. IEEE, Vo1. 83, pp. 705-740, May 1995 https://doi.org/10.1109/5.381842
  3. M. A. Turk and A. P. Pentland, 'Face recognition using eigenfaces,' IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1991, pp. 586-591, Jun. 1991 https://doi.org/10.1109/CVPR.1991.139758
  4. N. Kambhatla and T. K. Leen, 'Dimension reduction by local principal component analysis,' Neural Computation, vol. 11, no. 2, pp. 1493-1516, 1997 https://doi.org/10.1162/neco.1997.9.7.1493
  5. Tipping, M., Bishop, C., 1999. Mixtures of probabilistic principal component analyzers. Neural Computation, 11, 443-482 https://doi.org/10.1162/089976699300016728
  6. H. C. Kim, D. Kim, S. Y. Bang, 'Face recognition using the mixture-of-eigenface method,' Pattern Recognition Letters, Vol.23, pp.1549-1558, 2002 https://doi.org/10.1016/S0167-8655(02)00119-8
  7. D. S. Turaga and R. Chen, 'Face recognition using mixtures of principal components,' Proceedings. 2002 International Conference on Image Processing., vol. 2, pp. 101-104, Sept. 2002 https://doi.org/10.1109/ICIP.2002.1039897
  8. R. M. Gray and D. L. Neuhoff, 'Quantization,' IEEE Trans. on Information Theory, vol. 44, no. 6, pp. 2325-2383, Oct. 1998 https://doi.org/10.1109/18.720541
  9. Y. Linde, A.Buzo, and R.M.Gray, 'An algorithm for vector quantizer design, ' IEEE Trans. Commun, Vol. COM-28, pp. 84-95, January 1980 https://doi.org/10.1109/TCOM.1980.1094577
  10. K. Etemad and R. Chellappa, 'Discriminant Analysis for Recognition of Human Face Images,' J. Optical Soc. Am. A, vol. 14, pp. 1,724-1,733, 1997 https://doi.org/10.1364/JOSAA.14.001724
  11. E. Oja, 'Neural networks, principal components and subspaces,' International Journal of Neural Systems, vol. 1, pp. 61-68, 1989 https://doi.org/10.1142/S0129065789000475
  12. S. Y. Kung and K. I. Diamantaras, 'A neural network learning algorithm for adaptive principal component extraction (APEX),' Proc. of the IEEE ICASSP, pp. 861-864, 1990 https://doi.org/10.1109/ICASSP.1990.115975
  13. T. Cox and M. Cox, Multidimensional Scaling, Chapman and Hall, London 1994
  14. S. T. Roweis and L. K. Saul, 'Nonlinear dimensionality reduction by locally linear embedding,' Science, vol. 290, pp. 2323-2326, Dec. 2000 https://doi.org/10.1126/science.290.5500.2323
  15. T. Hastie and W. Stuetzle, 'Principal curves,' Journal of the American Statistical Association, vol. 84, pp. 502-516, 1989 https://doi.org/10.2307/2289936
  16. A.Martinez and A.Kak: 'PCA versus LDA', IEEE Trans. On PAMI, 23(2):228-233, 2001 https://doi.org/10.1109/34.908974