• Title/Summary/Keyword: In-wheel-motor

Search Result 325, Processing Time 0.022 seconds

The Control Method of In-Wheel PMSM for Electric Scooter using Speed Observer (속도 관측기를 이용한 전기스쿠터용 IN-WHEEL 영구자석 동기 전동기의 제어 방법)

  • Son, Tae-Sik;Lee, Yong-Kyun;Kim, Hag-Wone;Cho, Kwan-Yuhl;Mok, Hyung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.130-136
    • /
    • 2011
  • This paper presents the torque control algorithm of a permanent magnet synchronous motor(PMSM) for an electric scooter. The volume of the in-wheel type motor is restricted due to the complicated mechanical structure in wheel of an electric scooter, so the hall sensors instead of resolver and encoder for the rotor position sensors are installed. In this paper, the rotor speed and position are estimated from the speed estimator for vector control of a PMSM with hall sensors. The motor starts to rotate at standstill in BLDC mode with 120 degree conduction. After start up, the operating mode is changed to the vector control with maximum torque per ampere(MTPA) operation at low speeds and flux weakening control at high speeds. The performance of the proposed control algorithm is verified through the experiment in the electric scooter.

Design and development of in-wheel motor-based walking assistance system

  • Park, Hyeong-Sam;An, Duk-Keun;Kim, Dong-Cheol;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.371-376
    • /
    • 2022
  • The purpose of this study is to develop a walking assistance system with mobility support and life support functions so that the elderly with reduced physical ability and patients who are uncomfortable when moving can move comfortably indoors and outdoors, and help social life. An obstacle recognition sensor module that can be applied indoors and outdoors is installed on a lightweight walking aid. The purpose of this study is to develop a walking assistance system with mobility support and life support functions so that the elderly with reduced physical ability and patients who are uncomfortable when moving can move comfortably indoors and outdoors, and help social life. An obstacle recognition sensor module that can be applied indoors and outdoors is installed on a lightweight walking aid. It is a system structure of an integrated actuator and brake system that can avoid obstacles in consideration of the safety of the elderly and is easy to install on the device. In this paper, the design of a lightweight walking aid was designed to increase the convenience of the socially disadvantaged and the elderly with reduced exercise ability. In addition, in order to overcome the disadvantage of being inconvenient to use indoors due to the noise and vibration of the motor during operation, an In-Wheel type motor is applied to develop and apply a low noise, low vibration and high efficiency drive system.

An Attitude Control and Stabilization of an Unstructured Object using CMG Subsystem (자이로 구동장치를 이용한 공중물체의 자세제어 및 안정화)

  • Lee, Geon-Yeong;Gwon, Man-O
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.459-466
    • /
    • 2000
  • In this paper, we propose an attitude controller for an unstructured object using CMG(Control Moment of Gyro) subsystem, which has a stabilizer function. The CMG subsystem consists of one motor for spinning the wheel and the other motor for turning the outer gimbal. While the wheel of CMG subsystem is spinning at high speed, applying force to the spin axis of the wheel leads the torque about the vertical axis. We utilize the torque to control the attitude of object in this study. For the stabilizer function, in additiion, holding the load at the current position, the power applied to the gimbal motor of CMG will be cut, which result in the braking force to stop the load by gyro effect. However, due to the gear reduction connected to outer gimbal, slow load motion cannot generate the braking force. Thus, in this study, we are willing to make a holding force by applying control power to the gimbal motor from the signal of piezoelectric gyroscopic sensor that detected the angular velocity of the load. These two features are demonstrated in experiment, carrying a beam with crane. As a result, load was started to rotate by controlling gimbal positiion and was stopped by turning off the gimbal power. Moreover, slow movement of the load was also rejected by additional control with gyroscopic sensor.

  • PDF

Design of a User-Friendly Control System using Least Control Parameters (최소 제어 인자 도출을 통한 사용편의성 높은 제어시스템 설계)

  • Heo, Youngjin;Park, Daegil;Kim, Jinhyun
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.67-77
    • /
    • 2014
  • An electric motor is the one of the most important parts in robot systems, which mainly drives the wheel of mobile robots or the joint of manipulators. According to the requirement of motor performance, the controller type and parameters vary. For the wheel driving motors, a speed tracking controller is used, while a position tracking controller is required for the joint driving motors. Moreover, if the mechanical parameters are changed or a different motor is used, we might have to tune again the controller parameters. However, for the beginners who are not familiar about the controller design, it is hard to design pertinently. In this paper, we develop a nominal robust controller model for the velocity tracking of wheel driving motors and the position tracking of joint driving motors based on the disturbance observer (DOB) which can reject disturbances, modeling errors, and dynamic parameter variations, and propose the methodology for the determining the least control parameters. The proposed control system enables the beginners to easily construct a controller for the newly designed robot system. The purpose of this paper is not to develop a new controller theory, but to increase the user-friendliness. Finally, simulation and experimental verification have performed through the actual wheel and joint driving motors.

Design & fulfillment of multi-functional electric wheelchair (다기능 전동휠체어의 설계 및 구현)

  • 강재명;강성인;김정훈;류홍석;이상배
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.261-264
    • /
    • 2002
  • In this study, we used a 16-bit microprocessor, 80C196KC for a control part in order to develop a multi-functional wheel-chair system, and implemented a joy-stick to control this system. For the complete system, we used a commercial electromotive wheelchair as a basic plant, and applied an encoder to get the rotating number of the motor to transfer data to the MCU to control the motor. We used PWM (Pulse Width Modulation) method to control the wheel-chair motor where a H-bridge circuit was configured. We used the fuzzy control algorithm for the operation of DC motor, which was attached to the electromotive wheelchair and manipulated following the change of the joystick position while a user was controlling the joystick. He also could control the speed and direction of DC motor as well as control position information.

  • PDF

Study on the Aid Control Algorithm for the Power-Assisted Smart Wheelchair (힘 보조형 스마트 휠체어를 위한 차량 제어 알고리즘 구현)

  • Kong, Jung-Shik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3360-3365
    • /
    • 2011
  • This paper deals with method to measure the user's driving-will force and to control the power-assisted wheelchair. To solve this problem, we extract the user's driving-will by using the mathematical motor model. And then, we get the linear and angular velocity at the center of the vehicle. Wheel velocities are also measured from center velocity. Finally, power-assisted electric wheelchairs are controlled by these data. Here all processes are verified by simulation.

A Study on the Plain Grinding Characteristics of Carbon Fiber Epoxy Composite with the GC Grinding Wheel (GC 연삭숫돌을 이용한 탄소섬유 에폭시 복합재료의 평면 연삭특성에 관한 연구)

  • 한흥삼
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.34-47
    • /
    • 2000
  • Since carbon fiber epoxy composite materials have excellent properties for structures due to their high specific strength, high specific modulus, high damping and low thermal expansion, the hollow shafts made of carbon fiber epoxy composites have been widely used for power transmission shafts for motor vehicles , spindles of machine tools, motor base, bearing mount for tool up and manufacturing. The molded composite machine elements are not usually accurate enough for mechanical machine elements, which require turning drilling , cutting and grinding. The experiment are surface grinding wheel GC60 to the carbon fiber epoxy composite specimen with respect to staking angle [0]nT , [45]nT, [90]nT on the CNC grinding machine. In this paper, the surface grinding characteristics of composite plate, which are surveyed experimentally and analytically with respect to the grinding force, surface roughness and wheel loading according to the variable depth of cut, wheel velocity and table feed rate are investigated.

  • PDF

Improvement of the Yaw Motion for Electric Vehicle Using Independent Front Wheel Steering and Four Wheel Driving (독립 전륜 조향 및 4륜 구동을 이용한 전기 차량의 선회 운동 향상)

  • Jang, Jae-Ho;Kim, Chang-Jun;Kim, Sang-Ho;Kang, Min-Sung;Back, Sung-Hoon;Kim, Young-Soo;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.1
    • /
    • pp.45-55
    • /
    • 2013
  • With the recent advancement of control method and battery technology, the electric vehicle have been researched to replace the conventional vehicle with electric vehicle with the view point of the environmental concerns and energy conservation. An electric vehicle which is equipped with the independent front steering system and in-wheel motors has advantage in terms of control. For example, the different torque which generated by left and right wheels directly can make yaw moment and the independent steering using outer wheel control is able to reduce the sideslip angle. Using of independent steering and driving system, the 4 wheel electric vehicle can improve a performance better than conventional vehicle. In this paper, we consider the method for improving the cornering performance of independent front steering system and in-wheel motor used electric vehicle with the compensated outer wheel angle and direct yaw moment control. Simulation results show that the method can improve the cornering performance of 4 wheel electric vehicle. We also apply the steering motor failure to steer the vehicle turned by the torque difference without steering. This paper describes an independent front steering and driving, consist of three parts; Vehicle Model, Control Algorithm for independent steering and driving and simulation. First, vehicle model is application of TruckSim software for independent front steering and 4 wheel driving. Second, control algorithm describes the reduced sideslip and direct yaw moment method in view of cornering performance. Last is simulation and verification.

Dynamic Analysis of Wheel-Rail High Speed Train Propelled by Superconducting Linear Synchronous Motor (초전도 선형동기전동기 추진 휠-레일 고속열차의 동특성 분석)

  • Lee, Jin-Ho;Lee, Chang-Young;Jo, Jeong-Min;Han, Young-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.119-125
    • /
    • 2016
  • This study examined the running dynamic characteristics of a hybrid type wheel-rail high speed train, in which the propulsion method of maglev is applied. A wheel-rail high speed train propelled by a superconducting linear synchronous motor (SC-LSM) is expected to be superior to a maglev train regarding economical and interoperable aspects, still having powerful thrust force as maglev. In this paper, regarding the two methods of applying the SC-LSM to an existing wheel-rail train, to investigate the influences of SC-LSM propulsion on the dynamic characteristics of wheel-rail high speed train, the dynamic model of train including interaction between the rotor and stator of SC-LSM is established. Through the simulation using the model, the influence of the interaction between the rotor and stator of SC-LSM on stability, ride comfort and the effect of guideway irregularity are investigated.

A Study on the Shift Motor Driving System Optimization of 4-WD Power Transformation Device (4-WD 동력전환장치의 변속 모터 구동부 최적화에 관한 연구)

  • Youm, Kwang Wook;Ham, Seong Hun;Oh, Se Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1187-1192
    • /
    • 2013
  • In the case of 4 wheel drive (4-WD) type car, power switching occurs to 4-WD by operating lever or switch that operates power switching device attached in transfer case which can operate motor by electric signal. So if the RPM of motor is high, power switching will not exactly occur and can cause damage to gear in transfer case according to circumstances. So in this study, we applied 2 level of planet gear type motor spindle of motor drive part of a power train. And conducted decelerating to increase torque to switch power safe and accurately. Also, we researched efficiency of gear by designing reduction gear ratio and gear type and by calculating contact stress and bending strength. Based on researched content, we made drive head of power switching device and a reduction module which uses type that uses motor spindle as sun gear and ring gear as cover.