• Title/Summary/Keyword: In-wheel

Search Result 3,317, Processing Time 0.042 seconds

A Study on the Characteristics of the Wheel/Roller Contact Geometry (차륜/궤조륜 기하학적 접촉특성에 관한 연구)

  • Hur, Hyun-Moo
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.618-623
    • /
    • 2006
  • Understanding the contact between wheel and rail is a starting point in railway vehicle dynamic research area and especially analysis for the contact geometry between wheel and rail is important. On the one hand, the critical speed as the natural characteristics of rolling-stock is generally tested on the roller rig. The geometrical characteristics of the wheel/roller contact on the roller rig are different from these of the general wheel/rail contact because the longitudinal radius of roller is not infinite compared with rail. Thus, in this paper we developed the algorithm to analyze the wheel/roller contact geometry of our roller rig which is constructed now and analyzed the difference between whee/roller contact and wheel/rail contact. In conclusion, we found that the yaw motion of wheelset and the roller radius influence the geometrical contact parameters in wheel flange contact area.

Design of Field-Driving Robot with Variable Wheel Mechanism (가변 휠 메커니즘을 가지는 필드 주행 로봇 설계)

  • Lee, Joon-Sung;Kim, Young-Seok;Kim, Kun-Jung;Yu, Kee-Ho
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.3
    • /
    • pp.186-190
    • /
    • 2019
  • When problems occurred in the unstable and/or extreme terrain environment, formal field-driving robots were unable to provide any other options such as the transformation of the wheel and body structure, and so on. For such reason, this paper proposed a novel type of integrated wheel mechanism that can be operated as a conventional driving wheel mode and hybrid wheel-leg mode in order to be negotiated in an unstable terrain environment. The mechanical effect of the proposed variable wheel mechanism was analyzed considering the geometric constraint and power requirement of the actuator for the transformation. In addition, we designed and manufactured the prototype of field-driving robot, which reliably control the variable wheel shape. Finally, the effectiveness of the variable wheel mechanism was verified by preliminary experimental approach.

Geometry Design of Omni-directional Mecanum Wheel (전방향 운동용 메카넘 바퀴의 기하학적 설계)

  • 신동헌;이인태
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.11-17
    • /
    • 1998
  • The mecanum wheel was originaly developed in sweden to realize the omni-directional motion of the cart. The circumference of each wheel is lined with rollers set at 45 degrees relative to the main wheel. This paper proves that the roller of the mecanum wheel shapes the ellipsoid, derives the kinematic relationships between the parameters of the wheel and rollers, and proposes the procedure to determine the parameters of the wheel. The result was implemented into the computer program for the design of the mecanum wheel.

  • PDF

Compatibility Analysis of Wheel/Rail Profile on Conventional Railway (기존철도 차륜/레일형상의 적합성 분석)

  • Hur, Hyun-Moo;Seo, Jung-Won;Chung, Heung-Chai;Goo, Dong-Hoe
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.934-939
    • /
    • 2004
  • Railway wheel/rail contact conditions have an influence on dynamic behavior of rolling stock. If there are problems of incompatibility between wheel and rail, damages like wheel wear, wheel spalling, rail wear, etc are occurred. Especially wheel and rail profiles are important factor of vehicle curving performance, so compatibility study between wheel and rail has to be carried out preferentially, In this study, we have analyzed the compatibility between wheel and rail of KNR conventional line to improve the maintenance efficiency of wheel and rail. Thus we showed the results relating to wheel/rail geometric contact, vehicle running performances as the change of wheel/rail combination.

  • PDF

A Study on Artificial Wheel Load Generation Method Using PSD Analysis (PSD 함수를 이용한 인공윤하중의 생성기법에 대한 연구)

  • Cho, Kwang-Il;Choi, Moon-Seock;Lim, Ji-Young;Kim, Sang-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.184-189
    • /
    • 2008
  • In this study, an artificial wheel load generation method is proposed to assist practical engineers performing dynamic analysis with simple procedure. To generate an artificial wheel loads from running vehicle, PSD(Power Spectrum Density) profiles of actual wheel load were sampled in terms of various road roughnesses. A detailed truck and bridge models were used for sampling actual wheel load to represent the real motion of moving vehicle. These wheel load profiles were simplified for the artificial wheel load. The simplification of actual wheel load profiles was performed by regression analysis. The result showed that the artificial wheel load well represents the real profiles of wheel load.

  • PDF

Development of Discontinuous Grinding Wheel with Multi-Porous Grooves(I) -Design, Manufacture and Grinding Characteristics of Discontinuous Grinding Wheel- (다기공홈형 단속지석의 개발에 관한 연구(I) - 단속지석의 설계, 제작 및 연삭특성 -)

  • Kim, J.D.;Jin, D.X.;Lee, Y.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.52-59
    • /
    • 1996
  • Conventionally, grinding of stainless steel, aluminium ally, copper alloy, and titanum alloy are difficult to obtain the high quality finish, because they have the mechanical properties such as low hardness, high toughness which result in the loading of wheel and the poor surface finish. Inorder to perform the grinding operations for these sorts of materials easily, the discontinuous grinding wheel with multi-porous grooves has newly been developed. The multi-porous grooves were formed during wheel production. This discontinous grinding wheel increases the grinding performance. It is desirable to use the discontinuous grinding wheel when grinding materials wiht high efficiency and accuracy which is impossible by conventional wheels. In this paper, the constructing and manufacturing method of grinding wheel with multi-proous grooves are explained, and the grinding charateristics of discontinuous grinding wheel are also illustrate.

  • PDF

Design of a Wheel Test Bed for a Planetary Exploration Rover and Driving Experiment (행성탐사 로버 휠 테스트 베드 설계 및 주행 실험)

  • Kim, Kun-Jung;Kim, Seong-Hwan;Yu, Kee-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.372-377
    • /
    • 2015
  • In this paper, the consideration factors that affect the actual driving of a rover wheel was examined based on the wheel-terrain model. For the evaluation of driving performance in a real environment, the test bed of the rover wheel consists of the driving part of the wheel and sensing part of the various parameters was designed and assembled. Using the test bed, the preliminary driving experiment concerning the slip ratio, sinkage, and friction force according to the rotational velocity and the shape of the wheel were carried out and evaluated. The wheel test bed and the experiment results are expected to contribute to finding the optimal result in the designing of the wheel shape and the planning of the driving conditions through further study.

Development of Discontinuous Grinding Wheel with Multi-Porous Grooves (다기공홈형 단속연삭지석의 개발에 관한 연구)

  • 김정두
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.108-113
    • /
    • 1996
  • Conventionally, grinding of stainless steel, aluminium alloy, copper alloy, and titanum alloy is difficult due to the mechanical properties such as low hardness, high toughness which result in the loading of wheel and the poor surface finish. In order to grind this sort of materials easily, discontinuous grinding wheel with multi-porous grooves was newly developed. The multi-porous grooves were formed during wheel production. This discontinuous grinding wheel drastically increases the grinding performance. It is desirable to use the discontinuous grinding wheel when grinding materials with high efficiency and accuracy which is impossible by conventional wheels. In this paper, the construction and manufacturing method of grinding wheel with multi-porous grooves are explained. The grinding charateristics of discontinuous grinding wheel was also illustrated.

  • PDF

Calculating the Contact Stress Resulting from Lateral Movement of the Wheel on Rail by Applying Hertz Theory

  • Ashofteh, Roya Sadat
    • International Journal of Railway
    • /
    • v.6 no.4
    • /
    • pp.148-154
    • /
    • 2013
  • This article has tried to review the maximum contact stresses in the contact area of the wheel and rail as a result of lateral movement of the wheel on rail by taking advantage from Hertz theory. Since wheel movement on rail is accompanied by lateral movement due to wheel profile conisity, so the contact point of wheel and rail is not constant and the contact stresses are therefore changeable in every single moment. Since the shape of rail profile and rail inclination, wheel diameter and the mechanical properties of the wheel and rail are effective on the stresses of contact area, these parameters have been studied by applying Hertz theory. This article aims to calculate the contact stresses in different parts on the wheel surface by using Hertz theory.

Damage Evaluation of Wheel Tread for High Speed Train Using Replication and Fracture Mechanics Characteristics (비파괴적 표면조직검사법과 파괴역학 특성에 따른 고속철도용 차륜 답면의 손상 평가)

  • Kwon, Seok-Jin;Lee, Dong-Hyung;Seo, Jung-Won;Kwon, Sung-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.756-763
    • /
    • 2007
  • The majority of catastrophic wheel failures are caused by surface opening fatigue cracks either in the wheel tread or wheel flange areas. The inclined cracks at railway wheel tread are initiated and the cracks are caused by wheel damage-spatting after 60,000 km running. Because the failured railway wheel is reprofiled before regular wheel reprofiling, the maintenance cost for the railway wheel is increased. Therefore, it is necessary to analyze the mechanism for initiation of crack. In the present paper, the combined effect on railway wheels of a periodically varying contact pressure and an intermittent thermal braking loading is investigated. To analyze damage cause for railway wheels, the measurements for replication of wheel surface and the effect of braking application in field test are carried out. The result shows that the damages in railway wheel tread are due to combination of thermal loading and ratcheting.