• 제목/요약/키워드: In-water Algorithm

검색결과 1,386건 처리시간 0.038초

입자 군집 최적화 알고리즘을 이용한 양상태 소나 최적 배치 연구 (Optimal deployment of bistatic sonar using particle swarm optimization algorithm)

  • 김지섭;이대혁;양원준;김영승;최지웅;권혁종;박중용;손수욱;배호석;박정수
    • 한국음향학회지
    • /
    • 제43권4호
    • /
    • pp.437-444
    • /
    • 2024
  • 양상태 소나는 해양환경, 송·수신기의 위치(위도, 경도)와 수심에 따라 탐지성능이 크게 변동한다. 따라서 해양환경을 고려한 양상태 소나 최적 배치 연구가 필요하다. 본 연구에서는 동해 울릉분지 지역에서 공간적으로 분리된 수상함 2척에서 각각 단상태 소나와 양상태 소나를 운용하는 경우, 송·수신기의 위치와 수심을 최적 배치하는 알고리즘을 제안한다. 탐색구역 내 탐지가 가능한 면적을 최대화하는 송·수신기의 위치와 수심을 탐색하기 위해 입자 군집 최적화 알고리즘이 사용되었다. 본 연구에서 제안하는 알고리즘으로 배치를 수행한 결과, 모델 반복 횟수의 증가에 따라 탐지면적이 증가하였으며 수상함 2척의 송·수신기가 최적의 위치와 수심에 수렴하는 것이 확인되었다.

Post-Chlorination Process Control based on Flow Prediction by Time Series Neural Network in Water Treatment Plant

  • Lee, HoHyun;Shin, GangWook;Hong, SungTaek;Choi, JongWoong;Chun, MyungGeun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권3호
    • /
    • pp.197-207
    • /
    • 2016
  • It is very important to maintain a constant chlorine concentration in the post chlorination process, which is the final step in the water treatment process (hereafter WTP) before servicing water to citizens. Even though a flow meter between the filtration basin and clear well must be installed for the post chlorination process, it is not easy to install owing to poor installation conditions. In such a case, a raw water flow meter has been used as an alternative and has led to dosage errors due to detention time. Therefore, the inlet flow to the clear well is estimated by a time series neural network for the plant without a measurement value, a new residual chlorine meter is installed in the inlet of the clear well to decrease the control period, and the proposed modeling and controller to analyze the chlorine concentration change in the well is a neuro fuzzy algorithm and cascade method. The proposed algorithm led to post chlorination and chlorination improvements of 1.75 times and 1.96 times respectively when it was applied to an operating WTP. As a result, a hygienically safer drinking water is supplied with preemptive response for the time delay and inherent characteristics of the disinfection process.

Forecasting of Daily Inflows Based on Regressive Neural Networks

  • Shin, Hyun-Suk;Kim, Tae-Woong;Kim, Joong-Hoon
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2001년도 학술발표회 논문집(I)
    • /
    • pp.45-51
    • /
    • 2001
  • The daily inflow is apparently one of nonlinear and complicated phenomena. The nonlinear and complexity make it difficult to model the prediction of daily flow, but attractive to try the neural networks approach which contains inherently nonlinear schemes. The study focuses on developing the forecasting models of daily inflows to a large dam site using neural networks. In order to reduce the error caused by high or low outliers, the back propagation algorithm which is one of neural network structures is modified by combining a regression algorithm. The study indicates that continuous forecasting of a reservoir inflow in real time is possible through the use of modified neural network models. The positive effect of the modification using tole regression scheme in BP algorithm is showed in the low and high ends of inflows.

  • PDF

Motion analysis within non-rigid body objects in satellite images using least squares matching

  • Hasanlou M.;Saradjian M.R.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.47-51
    • /
    • 2005
  • Using satellite images, an optimal solution to water motion has been presented in this study. Since temperature patterns are suitable tracers in water motion, Sea Surface Temperature (SST) images of Caspian Sea taken by MODIS sensor on board Terra satellite have been used in this study. Two daily SST images with 24 hours time interval are used as input data. Computation of templates correspondence between pairs of images is crucial within motion algorithms using non-rigid body objects. Image matching methods have been applied to estimate water body motion within the two SST images. The least squares matching technique, as a flexible technique for most data matching problems, offers an optimal spatial solution for the motion estimation. The algorithm allows for simultaneous local radiometric correction and local geometrical image orientation estimation. Actually, the correspondence between the two image templates is modeled both geometrically and radiometrically. Geometric component of the model includes six geometric transformation parameters and radiometric component of the model includes two radiometric transformation parameters. Using the algorithm, the parameters are automatically corrected, optimized and assessed iteratively by the least squares algorithm. The method used in this study, has presented more efficient and robust solution compared to the traditional motion estimation schemes.

  • PDF

VFSMOD-w 모형과 유전자 알고리즘을 이용한 식생여과대의 최적화 (Optimization of Vegetative Filter Strip using VFSMOD-w model and Genetic-Algorithm)

  • 박윤식;현근우
    • 한국물환경학회지
    • /
    • 제30권2호
    • /
    • pp.159-165
    • /
    • 2014
  • Vegetative Filter Strip (VFS) is one of effective Best Management Practices (BMPs) to prevent sediment-laden water problem, is installed at the edge of source area such agricultural area so that sediment occurred in source area is trapped by VFS before it flow into stream or river. Appropriate scale of it needs to be simulated before it is installed, considering various field conditions. In this study, a model using VFSMOD-w model and Genetic Algorithm to determine effective VFS length was developed, it is available to calibrate input parameter related to source area sediment yield through thousands of VFSMOD-w simulations. Useful DBs, moreover, are stored in the model so that very specific input parameters can be used with reasonable values. Compared simulated values to observed data values for calibration, R2 and Nash-Stucliffe model efficiency coefficient were 0.74 and 0.65 in flow comparison, and 0.89 and 0.79 in sediment comparison. The model determined 1.0 m of Filter Length, 0.18 of Filter Slope, and 0.2 cm of Filter Media Spacing to reduce 80% of sediment by VFS. The model has not only Auto-Calibration module also DBs for specific input parameters, thus, the model is expected to be used for effective VFS scale.

한강수질 평가를 위한 COD (화학적 산소 요구량) 모델 평가 (Chemical Oxygen Demand (COD) Model for the Assessment of Water Quality in the Han River, Korea)

  • Kim, Jae Hyoun;Jo, Jinnam
    • 한국환경보건학회지
    • /
    • 제42권4호
    • /
    • pp.280-292
    • /
    • 2016
  • Objectives: The objective of this study was to build COD regression models for the Han River and evaluate water quality. Methods: Water quality data sets for the dry season (as of January) during a four-year period (2012-2015) were collected from the database of the Han River automatic water quality monitoring stations. Statistical techniques, including combined genetic algorithm-multiple linear regression (GA-MLR) were used to build five-descriptor COD models. Multivariate statistical techniques such as principal component analysis (PCA) and cluster analysis (CA) are useful tools for extracting meaningful information. Results: The $r^2$ of the best COD models provided significant high values (> 0.8) between 2012 and 2015. Total organic carbon (TOC) was a surrogate indicator for COD (as COD/TOC) with high reliability ($r^2=0.63$ in 2012, $r^2=0.75$ for 2013, $r^2=0.79$ for 2014 and $r^2=0.85$ for 2015). The ratios of COD/TOC were calculated as 2.08 in 2012, 1.79 in 2013, 1.52 and 1.45 in 2015, indicating that biodegradability in the water body of the Han River was being sustained, thereby further improving water quality. The BOD/COD ratio supported these findings. The cluster analysis revealed higher annual levels of microorganisms and phosphorous at stations along the Hangang-Seoul and Hantangang areas. Nevertheless, the overall water quality over the last four years showed an observable trend toward continuous improvement. These findings also suggest that non-point pollution control strategies should consider the influence of upstreams and downstreams to protect water quality in the Han River. Conclusion: This data analysis procedure provided an efficient and comprehensive tool to interpret complex water quality data matrices. Results from a trend analysis provided much important information about sources and parameters for Han River water quality management.

Metaheuristic-designed systems for simultaneous simulation of thermal loads of building

  • Lin, Chang;Wang, Junsong
    • Smart Structures and Systems
    • /
    • 제29권5호
    • /
    • pp.677-691
    • /
    • 2022
  • Water cycle algorithm (WCA) has been a very effective optimization technique for complex engineering problems. This study employs the WCA for simultaneous prediction of heating load (LH) and cooling load (LC) in residential buildings. This algorithm is responsible for optimally tuning a neural network (NN). Utilizing 614 records, the behavior of the LH and LC is explored and the captured knowledge is then used to predict for 154 unanalyzed building conditions. Since the WCA is a population-based algorithm, different numbers of the searching agents were tested to find the most optimum configuration. It was observed that the best solution is discovered by 500 agents. A comparison with five newly-developed benchmark optimizers, namely equilibrium optimizer (EO), multi-tracker optimization algorithm (MTOA), slime mould algorithm (SMA), multi-verse optimizer (MVO), and electromagnetic field optimization (EFO) revealed that the WCANN predicts the desired parameters with considerably larger accuracy. Obtained root mean square errors (1.4866, 2.1296, 2.8279, 2.5727, 2.5337, and 2.3029 for the LH and 2.1767, 2.6459, 3.1821, 2.9732, 2.9616, and 2.6890 for the LC) indicated that the most reliable prediction was presented by the proposed model. The EFONN, however, provided a more time-effective solution. Lastly, an explicit predictive formula was elicited from the WCANN.

Canal Operation Simulation of Middle Route Project

  • Fan, Jie
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.26-32
    • /
    • 2008
  • Middle Route Project, the largest water conveyance system in China delivers the water of Changjiang River to North China. In order to create canal operation simulation system, mathematical models are established based on the analysis of hydraulics about steady flow, unsteady flow, and check gate. By simulating the canal operation behavior, we improved the check gate control algorithm and predicted the change process of water surface and flow profile which is very valuable to actual canal operation.

  • PDF

고해상도 강우자료와 딥러닝 알고리즘을 활용한 수위 변동성 예측 (Utilizing deep learning algorithm and high-resolution precipitation product to predict water level variability)

  • 한희찬;강나래;윤정수;황석환
    • 한국수자원학회논문집
    • /
    • 제57권7호
    • /
    • pp.471-479
    • /
    • 2024
  • 기후변화로 인한 집중호우의 발생으로 홍수 피해가 심각해지고 있다. 하천의 수위 변동성을 예측하고 신속한 홍수 예·경보를 위해 물리적 기반의 수문 모형이 활용됐다. 최근에는 수문 데이터 간의 비선형적인 관계를 기반으로 머신러닝, 딥러닝 알고리즘을 활용한 수문 모의가 주목받고 있다. 본 연구에서는 Long Short-Term Memory (LSTM) 알고리즘을 활용하여 섬진강 수계의 하천 수위를 예측하고자 한다. 또한 Climate Prediction Center morphing method (CMORPH) 기반의 격자형 강우 자료를 알고리즘의 입력자료로 적용하여 지상 데이터의 한계를 보완하고자 한다. CMORPH 데이터와 LSTM 알고리즘을 결합한 모형의 수위 예측 결과는 평균 CC가 0.98, RMSE는 0.07 m, 그리고 NSE는 0.97로 나타났다. 향후 딥러닝과 원격자료를 활용하여 수위 예측을 수행한다면 지상 관측 데이터의 단점을 보완하고, 신뢰도 높은 예측 결과를 얻을 수 있을 것으로 기대되는 바이다.

진화 알고리즘을 이용한 경수로 폐연료의 중수로 재사용을 위한 최적 조합 탐색에 관한 연구 (A Study for searching optimized combination of Spent light water reactor fuel to reuse as heavy water reactor fuel by using evolutionary algorithm)

  • 안종일;정경숙;정태충
    • 지능정보연구
    • /
    • 제3권2호
    • /
    • pp.1-9
    • /
    • 1997
  • 본 논푼에서는 경수로 원자력 발전소의 사용 후 핵연료를 중수로의 핵연료로 재사용하기 위해 사용 후 경수로 핵연료의 최적 조합을 찾는데 진화 알고리즘(Evolutionary Algorithm)을 이용하여 해결해 보고자 한다. 진화 알고리즘은 대규모 문제 공간에서 최적화 문제를 해결하는데 적합한 알고리즘이다. 사용 후 경수로 핵연료에는 중수로에서 사용할 수 있는 유용한 원자들을 많이 포함하고 있지만 핵연료 봉마다 그 함량이 다양하고, 중수로 연료가 되기 위한 제약 조건 때문에 최적 조합 전략이 펼요하다. 사용후 핵연료의 조합 문제는 알고리즘 분야에서 대표적인 조합 최적화 문제인 0/1 Knapsack문제와 같이 Non-Polynomial (NP) Complete문제에 해당한다. 이러한 문제를 해결하기 위해셔는 고전적언 전화 알고리즘의 전략에 기반하여 랜덤 연산자를 이용하되 평가 함수 값이 좋은 방향으로만 탐색을 수행하는 방법이 있으나 이것은 탐색의 효율면에셔 좋지 않다. 따라서 본 연구에서는 벡터 연산자를 이용하여 최적의 해를 보다 빨리 얻을 수 있는 휴리스틱을 사용하는 방법을 제안한다. 본 논문에서는 경수로 핵연료 조합 문제 영역의 모든 지식을 벡터화하여 벡터의 연산만으로 가능성 검사, 해를 평가 하는 방법을 소개한다. 또한 벡터 휴리스틱이 고전적인 진화 알고리즘에 비해 어느 정도의 성능을 보이는지 비교한다.

  • PDF