• Title/Summary/Keyword: In-vehicle interface

Search Result 413, Processing Time 0.032 seconds

Design of Common DLI Message Module based on API for the System based on Construction of the Korean Unmanned Aerial Vehicle Interface Protocol (한국형 무인항공기 연동 프로토콜 기반 시스템 구축을 위한 API 기반 공통 DLI 메시지 모듈 설계)

  • Taewon Kim;Sinjoo Lee;Dongho, Lee;Younggon, Kim
    • Journal of Platform Technology
    • /
    • v.10 no.4
    • /
    • pp.25-38
    • /
    • 2022
  • Recently, it is reported that the Korean Unmanned Aerial Vehicle (UAV) interface protocol (K-4586) based on STANAG-4586 is being developed to secure interoperability between UAVs. The core elements of the K-4586-based Unmanned Aircraft System (UAS) are the Core UAV Control System (CUCS), Vehicle Specific Module (VSM), Data Link Interface (DLI), and C4I systems. In UAS based on K-4586, the DLI function for transmitting and receiving messages to link UAVs is included in VSM and CUCS respectively. The Generator/Analyzer (G/A) tool is an apparatus that is developed for protocol conformance verification for VSM and CUCS, and G/A tools with DLI message transmitting and receiving should be developed separately. Core applications (VSM, CUCS, DLI) and G/A tools based on K-4586 may be developed independently depending on the developers. If the DLI message modules are different for each developer, the scope and results of protocol conformance verification will be dissimilar, and some problems may happen during system integration. In this study, common DLI message module based on the API was designed to provide the DLI message transmitting and receiving function necessary to the development of core applications and the protocol conformance verification tool of based on K-4586. When applying the proposed common DLI message module, it can be expected to shorten the UAS system development period and reduce costs, and ensure conformance of protocol. In this paper, the design and implementation method for the common DLI message module based on API was proposed and the results of functional test was described.

A Study of Automatic Evaluation Platform for Speech Recognition Engine in the Vehicle Environment (자동차 환경내의 음성인식 자동 평가 플랫폼 연구)

  • Lee, Seong-Jae;Kang, Sun-Mee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7C
    • /
    • pp.538-543
    • /
    • 2012
  • The performance of the speech recognition engine is one of the most critical elements of the in-vehicle speech recognition interface. The objective of this paper is to develop an automated platform for running performance tests on the in-vehicle speech recognition engine. The developed platform comprise of main program, agent program, database management module, and statistical analysis module. A simulation environment for performance tests which mimics the real driving situations was constructed, and it was tested by applying pre-recorded driving noises and a speaker's voice as inputs. As a result, the validity of the results from the speech recognition tests was proved. The users will be able to perform the performance tests for the in-vehicle speech recognition engine effectively through the proposed platform.

Collecting the Information Needs of Skilled and Be-ginner Drivers Based on a User Mental Model for a Cus-tomized AR-HUD Interface

  • Zhang, Han;Lee, Seung Hee
    • Science of Emotion and Sensibility
    • /
    • v.24 no.4
    • /
    • pp.53-68
    • /
    • 2021
  • The continuous development of in-vehicle information systems in recent years has dramatically enriched drivers' driving experience while occupying their cognitive resources to varying degrees, causing driving distraction. Under this complex information system, managing the complexity and priority of information and further improvement in driving safety has become a key issue that needs to be urgently solved by the in-vehicle information system. The new interactive methods incorporating the augmented reality (AR) and head-up display (HUD) technologies into in-vehicle information systems are currently receiving widespread attention. This superimposes various onboard information into an actual driving scene, thereby meeting the needs of complex tasks and improving driving safety. Based on the qualitative research methods of surveys and telephone interviews, this study collects the information needs of the target user groups (i.e., beginners and skilled drivers) and constructs a three-mode information database to provide the basis for a customized AR-HUD interface design.

An overview of the early stage of vehicle modeling and design

  • Baek, Moon-Yeol;Yi, Hyeong-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.334-337
    • /
    • 1996
  • This is a paper intended for initial stage of vehicle modeling and design. The needs to determine a variety of vehicle suspension parameters required for initial design has been difficult and time-consuming task. In order to facilitate a concise and efficient presentation of initial vehicle design procedure, this paper uses a mathematical model and physical geometry. Vehicle model consists of dimensions, inertias and mechanical constants. These vehicle model parameters divided into several categories : basic parameters, coefficients and constants, design specification, spring and damper, bush stiffness, stabilizer bar, suspension geometry, tire, and vehicle weights of various design condition. This paper uses a vehicle design fundamental (VDF) program running under Windows 95 graphical interface. The features of VDF will be briefly outlined in this paper.

  • PDF

SIMULATOR-BASED HUMAN FACTORS EVALUATION OF AUTOMATED HIGHWAY SYSTEM

  • Cha, D.W.;Park, P.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.625-635
    • /
    • 2006
  • From a viewpoint of human factors, automated highway systems(AHS) can be defined as one of the newly developing human-machine systems that consist of humans(drivers and operators), machines(vehicles and facilities), and environments(roads and roadside environments). AHS will require a changed vehicle control process and driver-vehicle interface(DVI) comparing with conventional driving. This study introduces a fixed-based AHS simulator and provides questionnaire-based human factors evaluation results after three kinds of automated driving speed experiences in terms of road configuration, operation policies, information devices, and overall AHS use. In the simulator, the "shared space-at-grade" concept-based road configuration was virtually implemented on a portion of the Kyungbu highway in Korea, and heads-up display(HUD), AHS information display, and variable message signs(VMS) were installed for appropriate AHS DVI implementation. As the results, the subjects expressed positive opinions on the implemented road configuration, operation policies, and the overall use of AHS. The results of this study would be helpful in developing the road configuration and DVI design guideline as the basic human factors research for the future implementation of AHS.

Effectiveness of a Vehicle Restraint System in Frontal Crash (정면 충돌시 차량 구속 시스템의 효과)

  • Lee, Dong-Jae;Oh, Kwang-Seok;Son, Kwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.314-314
    • /
    • 2000
  • This study deals with the analysis of the effectiveness of a safer belt in frontal crash. ATB, Articulated Total Body, program is used as a dynamics solver of the occupant model. ATB is a public code, however, the program is somewhat cumbersome to use due to lack of sufficient user interface. A preprocessor and a postprocessor are, therefore, developed for a user friendly graphic interface in Windows environment. Dialog boxes are used for an interface with GEBOD, Generator of Body Data, for human anthropometry and with ADAMS for vehicle dynamics. It is found through three test simulations that simulated results are in good agreement with those obtained by ATB. The effect of the initial slack of safety belt is investigated for frontal crash using the developed program.

  • PDF

Development of Vehicle Oriented Black Box System Based on U-Healthcare and Human-Free Guard Functions

  • Lee, Dong-Myung
    • Journal of Engineering Education Research
    • /
    • v.13 no.5
    • /
    • pp.36-40
    • /
    • 2010
  • The vehicle oriented block box system based on the u-healthcare and the human-free guard functions is developed in this paper. We also suggested the design philosophies, ideas, and analyzed the performance of the suggested system. The developed vehicle oriented black box system has some characteristics such as; 1) detects the dangerous situation by ultrasonic sensor in advance, and stores the situation information of the neighborhood of the vehicle to the imbedded SD memory card if the dangerous situation may be occurred in the parked vehicle; 2) detects the present location and speed information of the vehicle by GPS receiver and 3-axes acceleration sensor, and stores the information to the SD memory card periodically if the vehicle is running; 3) measures the dioxide carbon in the vehicle inside using $CO_2$ sensor, and forces the ventilation motor of the vehicle to operate and maintains the driver's health if the measured level is more than standard health requirements; 4) provides the stored vehicle's operating information to the driver by GUI (Graphical User Interface) based touch LCD monitor.

  • PDF

Evaluation of Haptic Seat for Vehicle Navigation System (자동차 네비게이션 시스템을 위한 햅틱 시트의 평가에 관한 연구)

  • Chang, Won-suk;Kim, Seok-Hwan;Pyun, Jong-Kweon;Ji, Yong-Gu
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.625-629
    • /
    • 2010
  • This study has confirmed that subjective positive and negative aspects a driver feels by applying haptic seat on a vehicle to substantiate vehicle navigation system. Our experiment with total twenty subjects provides that the reaction time (RT) is superior in haptic interface than visual or auditory interface but subjective satisfaction, which subjects feel, and workload is less low in a simulator environment. Although, the difference of individuals and unfamiliarity is relatively high inasmuch as the experiment of absolutely new technology, but overall satisfaction of haptic seat is high. The result of study provides some consideration and direction to need in implementation of a haptic seat and it also confirms their possibility meaningfully. We expect the interaction between a driver and a vehicle and safety improvement potentially through applied haptic seat on actual vehicles.

A study of the design and the implementation for the Human-Machine Interface Evaluation System in the In-Vehicle Navigation System (자동차 항법장치 HMI 평가시스템 설계 및 구축에 관한 연구)

  • Cha, Doo-Won;Park, Peom;Lee, Soo-Young
    • Proceedings of the ESK Conference
    • /
    • 1998.04a
    • /
    • pp.13.1-18
    • /
    • 1998
  • IVNS(In-Vehicle Navigation System) which developed by the advance of technological system including computer, display and communication will procide the important interface functions between the driver and the ITS (Intelligent Transport System). However, hat the human factors engineer can actually offer to the designer is by no means a complete set of design specifications. Therefore, a set of boundary conditions and operational ranges within which the designer can be assured that physical, perceptual and cognitive abilities and limitations of drivers will be accommodated system atically[6]. Also, this will be the considerations to compose the IVNS HMI (Human-Machine Interface) design guidelines and IVNS HMI evaluation system. As the first phase of developing the IVNS HMI evaluation system, this paper describe the architecture and the content of this system.

  • PDF