• 제목/요약/키워드: In-tunnel Accident Detection

검색결과 15건 처리시간 0.023초

CCTV 영상처리를 이용한 터널 내 사고감지 알고리즘 (An In-Tunnel Traffic Accident Detection Algorithm using CCTV Image Processing)

  • 백정희;민주영;남궁성;윤석환
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권2호
    • /
    • pp.83-90
    • /
    • 2015
  • 현존하는 자동 사고감지 알고리즘의 대부분은 개방도로 혹은 터널 내에서 사고 발생 시 이것을 사고로 감지하지 못하고 혼잡으로 감지하는 경우가 많다는 문제점을 가지고 있다. 본 논문에서는 개방도로에서의 사고감지 알고리즘을 기반으로 터널 내에서의 사고감지 알고리즘을 개선하여 감지율을 높일 수 있는 알고리즘을 제안하였다. 개선된 알고리즘은 가우시안 혼합모델을 이용하여 픽셀의 변화량을 판단하여 터널 내 사고로 인한 정지차량을 우선 감지한 후 도로를 블록화하여 블록 간 점유율의 편차를 분석하여 최종 판단을 한다. 실제 사고영상에 알고리즘을 적용한 실험에서 모두 오류 없이 검지하였음을 확인하였다.

영상과 음향 기반의 교차로내 교통사고 검지시스템의 구현 (An Implementation of Traffic Accident Detection System at Intersection based on Image and Sound)

  • 김영욱;권대길;박기현;이경복;한민홍;이형석
    • 제어로봇시스템학회논문지
    • /
    • 제10권6호
    • /
    • pp.501-509
    • /
    • 2004
  • The frequency of car accidents is very high at the intersection. Because of the state of a traffic signal, quarrels happen after accidents. At night many cars run away after causing an accident. In this case, accident analyses have been conducted by investigating evidences such as eyewitness accounts, tire tracks, fragments of the car or collision traces of the car. But these evidences that don't have enough objectivity cause an error in judgment. In the paper, when traffic accidents happen, the traffic accident detection system that stands on the basis of images and sounds detects traffic accidents to acquire abundant evidences. And, this system transmits 10 seconds images to the traffic center through the wired net and stores images to the Smart Media Card. This can be applied to various ways such as accident management, accident DB construction, urgent rescue after awaring the accident, accident detection in tunnel and in inclement weather.

철도시스템의 확률론적 위험평가 모델 개발 연구 - 터널화재 위험도 평가에의 적용 (Development of Probabilistic Risk Analysis Model on Railroad System - Its Application to Tunnel Fire Risk Analysis)

  • 곽상록;왕종배;홍선호;김상암
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(II)
    • /
    • pp.265-270
    • /
    • 2003
  • Though the probability of tunnel fire accident is very low, but critical fatalities are expected when it occurred. In this study the effect of critical safety parameters on tunnel fire accident are examined using probabilistic technique. Fire detection time, smoke spread velocity, passenger escape velocity, flash-over time, and emergency service arrival time are considered. In order to estimate the uncertainties of input parameters Monte Carlo simulation are used, and fatalities for each assumed accident scenarios are obtained as results. For the efficiency of iterative calculation PRA(Probabilistic Risk Analysis) code is developed in this study. As a result fire detection have large effect.

  • PDF

사물 인터넷 기반의 스마트 터널 사고 경보 시스템 (IoT-based Smart Tunnel Accident Alert System)

  • 민기웅;이성노;최윤화;홍연택;이철선;고윤석
    • 한국전자통신학회논문지
    • /
    • 제19권4호
    • /
    • pp.753-762
    • /
    • 2024
  • 터널은 대피 장소가 한정적이며 후방 진입 차량들이 전방 사고 상황을 인식하기 어렵기 때문에 터널 교통 사고 시 2차 사고로 이어질 가능성이 매우 높다. 본 논문에서는 터널 교통 사고 시 파급 효과를 경감하기 위한 사물 인터넷 기반의 스마트 터널 사고 경보 시스템에 대해 연구하였다. 터널 내의 불꽃 감지 센서, 가스 감지 센서와 충격 감지 센서를 활용하여 측정 값이 기준을 초과하면, 비상 상항으로 판단하여 경보 시스템이 작동하도록 설계하였다. 사고가 감지되면 사고 안내 메시지가 LCD를 통해 표시되고, 와이파이 통신 망을 통해 터널 내외 운전자들에게 전송되도록 설계하였다. 하나의 성능 시험 시스템을 구축하였고 수개의 사고 시나리오들에 대해 성능 평가를 수행하였다. 성능 시험 결과, 스마트 사고 경보 시스템이 주어진 기준 값을 기준으로 정확하게 사고를 감지, 경보 절차를 수행하고 와이파이 무선 통신을 통해 경보 메시지를 스마트 폰에 성공적으로 전송함으로써 그 유효성을 확인할 수 있었다.

터널 내 유고상황 자동 판정을 위한 선행 연구: CCTV를 이용한 차량의 탐지와 추적 기법 고찰 (Preliminary study on car detection and tracking method using surveillance camera in tunnel environment for accident detection)

  • 오영섭;신휴성
    • 한국터널지하공간학회 논문집
    • /
    • 제19권5호
    • /
    • pp.813-827
    • /
    • 2017
  • 터널 내의 CCTV 영상은 동적으로 변화하는 요소들에 의해 영향을 받는 다양한 영상들을 촬영한다. 또한, 카메라의 상태 또한 관리 및 배치가 쉽지 않아 터널 내부 환경 변화에 따라 영상이 달라지는 경향이 있다. 본 논문에서는 터널 내에 설치된 CCTV 카메라 영상을 이용해 차량을 탐지하고 그 차량을 지속적으로 추적하는 새로운 방법을 소개한다. 터널 내 CCTV 카메라 영상은 모션블러 효과와 먼지로 인한 렌즈 흐려짐 효과로 인해 바로 차량을 탐지할 수 없다는 문제점이 있다. 본 논문에서는 이를 극복하기 위해 차영상/비-최대 억제 기법과 Haar Cascade 기법 등에 대한 효과 검토 실험을 제안하고 수행하였다. 본 논문에서 제안하는 방법을 통해 터널 내에 설치된 CCTV에서 차량의 탐지와 추적을 효과적으로 수행할 수 있으며 다양한 터널 유고상황을 자동으로 파악하기 위한 중요 정보를 확보할 수 있었다.

배경영상을 이용한 터널 유고 검지 방법 (Method of Tunnel Incidents Detection Using Background Image)

  • 정성환;주영호;이종태;이준환
    • 한국산학기술학회논문지
    • /
    • 제13권12호
    • /
    • pp.6089-6097
    • /
    • 2012
  • 본 논문은 터널 내에 설치된 카메라를 이용하여 터널 내 유고를 검지하는 방법을 제안하였다. 제안한 유고 검지 방법은 터널 내 설치된 카메라에서 영상을 입력받아 실시간으로 배경영상 차이법을 이용하여 움직이는 객체를 추출하여 정지물체, 차량 외 통행, 연기, 역주행을 검지하였다. 터널 내 이동하는 객체를 검지하기 위하여 객체의 이동 정보를 이용하여 능동적인 배경영상을 생성하였으며, 터널 내에서 발생하는 조명의 변화, 터널 입 출구에서 발생하는 외부 조명의 영향에 강인한 유고 검지 방법을 개발하였다. 제안한 방법의 성능을 알아보기 위하여 전남 여수의 마래터널 및 엑스포터널, 전북 임실의 운암터널에서 실험영상을 취득하였다. 실험에 사용한 영상의 개수는 정지물체 20건, 차량 외 통행 20건, 연기 4건, 역주행 10건이며 검지율은 정지물체, 차량외통행, 역주행은 실험 영상에서 모두 검지하였으며 연기의 경우 3건을 검지하여 우수한 성능을 확인할 수 있었다. 제안한 방법은 현재 전남 여수의 마래터널 및 엑스포터널, 전북 임실의 운암터널에서 운영중에 있으며 정확한 성능을 알아보기 위해서는 터널 내에서 실제 발생하는 유고 동영상을 획득한 뒤 성능 평가를 해야 할 것으로 사료된다.

역 원근변환 기법을 이용한 터널 영상유고시스템의 원거리 감지 성능 향상에 관한 연구 (A study for improvement of far-distance performance of a tunnel accident detection system by using an inverse perspective transformation)

  • 이규범;신휴성
    • 한국터널지하공간학회 논문집
    • /
    • 제24권3호
    • /
    • pp.247-262
    • /
    • 2022
  • 국내 200 m 이상 연장의 터널에서는 CCTV 설치가 의무화되어 있으며, 터널 내 돌발 상황을 자동으로 인지한 다음 터널 관리자에게 알릴 수 있는 터널 영상유고시스템의 운영이 권고된다. 여기서 터널 내 설치된 CCTV는 터널 구조물의 공간적인 한계로 인해 낮은 높이로 설치된다. 이에 따라 이동차량과 매우 인접하므로, 이동차량과 CCTV와의 거리에 따른 원근현상이 매우 심하다. 이로 인해, 기존 터널 영상유고시스템은 터널 CCTV로부터 멀리 떨어질수록 차량의 정차 및 역주행, 보행자 출현 및 화재 발생과 같은 터널 내 유고상황을 인지하기 매우 어려우며, 100 m 이상의 거리에서는 높은 유고상황 인지 성능을 기대하기 어려운 것으로 알려져 있다. 이 문제를 해결하기 위해 관심영역 설정 및 역 원근변환(Inverse perspective transform)을 도입하였으며, 이 과정을 통해 얻은 변환영상은 먼 거리에 있는 객체의 크기가 확대된다. 이에 따라 거리에 따라 객체의 크기가 비교적 일정하게 유지되므로, 거리에 따른 객체 인식 성능과 영상에서 보이는 차량의 이동속도 또한 일관성을 유지할 수 있다. 이를 증명하기 위해 본 논문에서는 터널 CCTV의 원본영상과 변환영상을 바탕으로 동일한 조건을 가지는 데이터셋을 각각 제작 및 구성하였으며, 영상 내 차량의 실제 위치의 변화에 따른 겉보기 속도와 객체 크기를 비교하였다. 그 다음 딥러닝 객체인식 모델의 학습 및 추론을 통해 각 영상 데이터셋에 대한 거리에 따른 객체인식 성능을 비교하였다. 결과적으로 변환영상을 사용한 모델은 200 m 이상의 거리에서도 객체인식 성능과 이동차량의 유고상황 인지 성능을 확보할 수 있음을 보였다.

CCTV를 이용한 터널내 사고감지 시스템 (Accident Detection System in Tunnel using CCTV)

  • 이세훈;이승엽;노영훈
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.3-4
    • /
    • 2021
  • 폐쇄된 터널 내부에서는 사고가 일어날 경우 외부에서는 터널 내 상황을 알 수가 없어 경미한 사고라 하더라도 대형 후속 2차 사고로 이어질 가능성이 크다. 또한영상탐지로사고 상황의 오검출을 줄이기 위해서, 본 연구에서는기존의 많은 CNN 모델 중 보유한 데이터에 가장 적합한 모델을 선택하는 과정에서 가장 좋은 성능을 보인 VGG16 모델을 전이학습 시키고 fully connected layer의 일부 layer에 Dropout을 적용시켜 Overfitting을일부방지하는 CNN 모델을 생성한 뒤Yolo를 이용한 영상 내 객체인식, OpenCV를 이용한 영상 프레임 내에서 객체의ROI를 추출하고이를 CNN 모델과 비교하여오검출을 줄이면서 사고를 검출하는 시스템을 제안하였다.

  • PDF

터널 내 돌발상황 오탐지 영상의 반복 학습을 통한 딥러닝 추론 성능의 자가 성장 효과 (Effect on self-enhancement of deep-learning inference by repeated training of false detection cases in tunnel accident image detection)

  • 이규범;신휴성
    • 한국터널지하공간학회 논문집
    • /
    • 제21권3호
    • /
    • pp.419-432
    • /
    • 2019
  • 대부분 딥러닝 모델의 학습은 입력값과 입력값에 따른 출력값이 포함된 레이블링 데이터(labeling data)를 학습하는 지도 학습(supervised learning)으로 진행된다. 레이블링 데이터는 인간이 직접 제작하므로 데이터의 정확도가 높다는 장점이 있지만 비용과 시간의 문제로 인해 데이터의 확보에 많은 노력이 소요된다. 그리고 지도 학습의 목표는 정탐지 데이터(true positive data)의 인식 성능 향상에 초점이 맞추어져 있으며, 오탐지 데이터(false positive data)의 발생에 대한 대처는 미흡한 실정이다. 본 논문은 터널 관제센터에 투입된 딥러닝 모델 기반 영상유고 시스템의 모니터링을 통해 정탐지와 레이블링 데이터의 학습으로 예측하기 힘든 오탐지의 발생을 확인하였다. 오탐지의 유형은 작업차량의 경광등, 터널 입구부에서 반사되는 햇빛, 차선과 차량의 일부에서 발생하는 길쭉한 검은 음영 등이 화재와 보행자로 오탐지되고 있었다. 이러한 문제를 해결하기 위해 현장에서 발생한 오탐지 데이터와 레이블링 데이터를 동시에 학습하여 딥러닝 모델을 개발하였으며, 그 결과 기존 레이블링 데이터만 학습한 모델과 비교하면 레이블링 데이터에 대한 재추론 성능이 향상됨을 알 수 있었다. 그리고 오탐지 데이터에 대한 재추론을 한 결과 오탐지 데이터를 많이 포함하여 학습한 모델일 경우 보행자의 오탐지 개수가 훨씬 줄었으며, 오탐지 데이터의 학습을 통해 딥러닝 모델의 현장 적용성을 향상시킬 수 있었다.

딥러닝 기반 터널 내 이동체 자동 추적 및 유고상황 자동 감지 프로세스 개발 (Development of a deep-learning based automatic tracking of moving vehicles and incident detection processes on tunnels)

  • 이규범;신휴성;김동규
    • 한국터널지하공간학회 논문집
    • /
    • 제20권6호
    • /
    • pp.1161-1175
    • /
    • 2018
  • 도로 터널의 주행은 시야의 제한으로 인해 유고상황이 발생한 후 2차 대형사고로 이어지기 쉽다. 따라서, 유고상황 발생 즉시, 상황을 자동 감지하여 신속히 초동대응이 이루어 져야 한다. 유고상황을 자동으로 감시할 수 있는 시스템은 기존에도 존재했지만, 폐합된 터널 내 열악 환경에서 촬영되는 CCTV 영상의 질적 한계로 인해 유고상황을 제대로 감지하지 못했다. 이러한 한계를 극복하기 위해 딥러닝을 기반으로 한 터널 영상유고 자동 감지 시스템을 개발하였으며, 지난 2017년 11월 딥러닝 객체 인식 네트워크에 대한 연구를 진행하여 우수한 객체인식 성능을 보인바 있다. 그러나 객체인식은 정지영상 기반으로 수행되므로 이동체의 이동방향과 속도를 알 수 없어, 정차 및 역주행 등 이동체의 이동특성에 따른 유고상황을 판단하기 힘들다. 본 논문에서는 객체인식으로 감지된 이동체의 객체정보를 기반으로 별도의 객체추적기법을 적용하여 이동체의 이동 특성을 자동으로 추적하는 프로세스를 제안하였다. 이를 통해 얻어진 이동체의 이동 방향과 속도 정보를 기반으로 정차 및 역주행을 판별하는 알고리즘을 개발하여 딥러닝 기반 터널 영상유고 자동감지 시스템을 완성하였다. 또한, 유고상황이 포함된 영상들에 대하여 유고상황 감지성능을 검증하였다. 검증 실험 결과, 화재, 정차와 역주행 상황에 대해서는 모두 100% 수준으로 완전한 유고상황 감지성능을 보였으나, 보행자 발생 상황에서는 78.5%로 상대적으로 낮은 성능을 보였다. 하지만, 향후 지속적인 영상유고 영상 빅데이터를 확장해 나가고 주기적인 재학습을 통해 유고상황에 대한 인지성능을 향상시켜 나갈 수 있을 것이다.