• 제목/요약/키워드: In-situ sol-gel

Search Result 32, Processing Time 0.312 seconds

Stress Development in Sol-gel Derived Multideposited Coatings of Lead Zirconate Titanate (다층 도포된 $\textrm{PbZr}_{0.53}\textrm{Ti}_{0.47}\textrm{O}_{3}$ sol-gel 박막내의 응력 거동)

  • Park, Sang-Myeon
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1069-1074
    • /
    • 1999
  • 본 연구에서는 PbZr(sub)0.53Ti(sub)0.47O$_3$(PZT) 박막을 복수 도포함에 따른 박막내의 응력을 온도의 함수로 실시간(in situ) 측정하였으며, 응력발생의 원인에 박막의 건조, 열분해(pyrolysis), 치밀화 및 결정화 현상과 연관시켜 설명하였다. 도포직후 단층박막에 생성된 55MPa의 인장응력은 가열됨에 따라$ 300^{\circ}C$-$350^{\circ}C$에서 최대 145MPa로 증가하였으며, 박막내의 응력은 모든 온도구간에서 항상 인장응력을 나타내었더. 다층도포시 $650^{\circ}C$까지 열처리 주기를 완료한 층이 두꺼워질수록 새로 도포한 층의 영향은 점차 감소하였으며, 9층박막에 이르러서는 가열과 냉각에 따라 응력이 동일하게 변화하였다. 응력측정 결과 다층박막의 치밀화는 $350^{\circ}C$에서 시작되어 $520^{\circ}C$-$550^{\circ}C$ 부근에서 완료되는 것으로 나타났으며 치밀화가 시작하는 온도는 미세경도 측정결과와 일치하였다. $PbTiO_3$(PT)와 달리 PZT 다층박막은 Si 기판 위에서 perovskite로의 결정화가 일어나지 않았다.

  • PDF

Preparation of Hydrophobic Coating Layers Using Organic-Inorganic Hybrid Compounds Through Particle-to-Binder Process (유-무기 하이브리드 화합물과 Particle-Binder 공정을 이용한 소수성 코팅막 제조)

  • Hwang, Seung-Hee;Kim, Hyo-Won;Kim, Juyoung
    • Journal of Adhesion and Interface
    • /
    • v.21 no.4
    • /
    • pp.143-155
    • /
    • 2020
  • Hydrophobic Organic-Inorganic (O-I) hybrid materials prepared by sol-gel process have been widely used at functional coating fields such as coatings for anti-corrosion, anti-icing, self-cleaning, anti-reflection. The key point for fabricating hydrophobic surface is to optimize the surface energy and roughness of the coating films. There are typical processes to control the surface energy and roughness which are 'In situ fabricating', 'Pre-fluorinating/Post-roughening', 'Pre-roughening/ Post-fluorinating'. In this study, particle-binder process was used for in-situ fabrication of hydrophobic coating films. Various O-I hybrid compounds prepared using several kinds of alkoxysilane compounds were used as a binder for silica nanoparticles at particle-binder process. To study effect of fluorine content and weight ratio of particle : binder on the hydrophobicity and surface morphology, Hydrophobic coating films were prepared onto glass substrate at various content of fluorine content of O-I hybrid binder and weight ratio of particle : binder. The coating films prepared using O-I hybrid binder (GPTi-HF10) having 10 wt% of fluorine content showed the highes water contact angle (107.52±1.6°). The coating films prepared at 1:3 weight ratio of GPTi-HF10 : silica nanoparticle exhibited the highest water contact angle (130.84±1.99°).

Synthesis of Poly(epoxy-imide)-Nano Silica Hybrid Film via CS Sol-gel Process and Their Dielectric Properties (CS졸을 이용한 Poly(epoxy-imide)-나노 Silica 하이브리드 필름의 합성과 유전특성)

  • Han, Se-Won;Han, Dong-Hee;Kang, Dong-Pil;Kang, Young-Taec
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.35-40
    • /
    • 2007
  • The new PEI(poly(epoxy-imide))-nano Silica film has been synthesized via in situ CS sol process, and the chemical bonding and microstructure of nano silica dispersed in resin were examined by FT-IR, TAG and SEM. The dielectric properties of these hybrid films over a given temperature and frequency ranges have been studied in a point of view of stable chemical bonding of nano Silica filler. The results from IR spectra and SEM photograph indicated that PEI-Silica hybrid film prepared with nano CS sol process has been synthesized in uniform and chemical bonding. The decrease property of dielectric constant with CS content, tangent loss consistent of given frequency and temperature has been explained in terms of the chain movement of polymer through chemical bonging and size effect of nano silica. The new PEI-CS sol hybrid film with such stable chemical and dielectric properties was expected to be used as a high functional coating application in ET, IT and electric power products.

Synthesis and Characterization of Nanocomposite Films Consisting of Vanadium Oxide and Microphase-separated Graft Copolymer

  • Choi, Jin-Kyu;Kim, Yong-Woo;Koh, Joo-Hwan;Kim, Jong-Hak;Mayes, Anne M.
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.553-559
    • /
    • 2007
  • Nanocomposite films were prepared by sol-gel synthesis from vanadium triisopropoxide with $poly((oxyethylene)_9$ methacrylate)-graft-poly(dimethyl siloxane), POEM-g-PDMS, producing in situ growth of vanadium oxide within the continuous ion-conducting POEM domains of micro phase-separated graft copolymer. The formation of vanadium oxide was confirmed by wide angle x-ray scattering (WAXS) and Fourier transform infrared (FT-IR) spectroscopy. Small angle x-ray scattering (SAXS) revealed the spatially-selective incorporation of vanadium oxide in the POEM domains. Upon the incorporation of vanadium oxide, the domain periodicity of the graft copolymer monotonously increased from 17.2 to 21.0 nm at a vanadium content 14 v%, above which it remained almost invariant. The selective interaction of vanadium oxide with POEM was further verified by differential scanning calorimetry (DSC) and FT-IR spectroscopy. The nanocomposite films exhibited excellent mechanical properties $(l0^{-5}-10^{-7}dyne/cm^2)$, mostly due to the confinement of vanadium oxide in the POEM chains as well as the interfaces created by the microphase separation of the graft copolymer.

Shear-induced microstructure and rheology of cetylpyridinium chloride/sodium salicylate micellar solutions

  • Park, Dae-Geun;Kim, Won-Jong;Yang, Seung-Man
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.3_4
    • /
    • pp.143-149
    • /
    • 2000
  • In this article, we considered shear-induced microstructure and rheological behavior of micellar solutions of cationic surfactant, cetylpyridinium chloride (CPC) in the presence of a structure-forming additive, sodium salicylate (NaSal). Shear viscosity, shear moduli and flow birefringence were measured as functions of the surfactant and additive concentrations. In the presence of NaSal, the micellar solution exhibited the non-linear rheological behavior due to the formation of supramolecular structures when the molar ratio of NaSal to CPC exceeded a certain threshold value. Flow birefringence probed the change in micelle alignment under shear flow. At low shear rates, the flow birefringence increased as the shear rate increased. On the other hand, fluctuation of flow birefringence appeared from the shear rate near the onset of shear thickening, which was caused by shear-induced coagulation or aggregation. These results were confirmed by the SEM images of in situ gelified micelle structure through sol-gel route.

  • PDF

Properties of Spin-On-Glass Siloxane Thin Films Fluorine-doped by CF$_4$ Plasma (CF$_4$ 플라즈마 처리로 불소를 첨가한 실록산 Spin-On-Glass 박막의 특성)

  • 김현중;김기호
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.3
    • /
    • pp.258-263
    • /
    • 2001
  • Siloxane thin films were fabricated on a silicon wafer by spin-coating using a siloxane solution made by the sol-gel process. Fluorine was doped using$ CF_4$ plasma treatment. The film was then annealed in-situ state in the nitrogen atmosphere. In order to examine the influence of annealing and fluorine doping on the siloxane thin film, thermogravimetric-differential thermal analysis (TG-DTA), Fourier transform-infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) were used and the dielectric constant was determined by the high-frequency capacitance-voltage method. Stable siloxane films could be obtained by in-situ annealing in a nitrogen atmosphere after $CF_4$ plasma treatment, and the dielectric value of the film was $\varepsilon$ 2.5.

  • PDF

Organic-Inorganic nani-Composite of PMMA-Forsterite Doped with $Eu^{+3}$

  • Park, Dong Gon;Gang, Jin;Gwon, Hae Yeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.604-610
    • /
    • 2000
  • Drying-step in sol-gel processing was bypassed by exchanging alcoholic solvent in forsterite alcogel directly with MMA. By in-situ polymerization of the MMA, organic-inorganic nano-composite of PMMA-forsterite was prepared. As porous nature of inorganic networks in the gel was preserved and fixated in the composite, spherical morphology of PMMA was resulted. The PMMA-forsterite composite was optically transparent, machinable,mechanically sustainable, and thermally more stable than pristine PMMA. When doped with $Eu^{+3}$, inorganic moiety in the composite provided site environment that is very different from that in pristine PMMA. Prominent $^{5}D_0$$^{7}F_0$ transition at 578 nm, broken degeneracy in $^{5}D_0$$^{7}F_1$ and $^{5}D_0$$^{7}F_2$ transitions suggested that $Eu^{+3}$ was exclusively doped in the inorganic moiety of the composite, which had lower symmetry than the organic counterpart.

Novel Preparation of Epoxy/Silica Nanocomposite Using Si-N Precursor (Si-N 전구체를 이용한 에폭시/실리카 나노복합재료의 제조)

  • Kim Lee Ju;Yoon Ho Gyu;Lee Sang-Soo;Kim Junkyung
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.391-396
    • /
    • 2004
  • In order to overcome drawbacks in the conventional preparation of epoxy/silica nanocomposites, such as formation of micro voids and dimensional instability caused by evolution of volatile by-products during curing reaction, a novel preparation method using Si-N precursor has been proposed. When prepared through in-situ reaction of epoxy curing reaction with sol-gel reaction of Si-N precursor, methyltripiperidinylsilane (MTPS) which does not produce by-products during reaction, epoxy/silica nanocomposites of extremely even dispersion of inorganic phase could be successfully prepared, resulting in high enhancement of mechanical and thermal properties as well as outstanding transparency.

Improvement of Hard Coating Characteristics by UV-curable Organic/Inorganic Hybrids (자외선 경화형 유기/무기 하이브리드에 의한 하드코팅 특성 향상)

  • Han, Ji-Ho;Kim, Hyung-Il
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.626-631
    • /
    • 2017
  • Transparent plastic substrates require an improvement in properties such as surface hardness and thermal stability for optical applications. In this study, UV-curable organic/inorganic hybrids were synthesized to improve those properties. In order to make the optimum dispersion of inorganic component into the organic matrix, an in situ synthetic method was applied based on sol-gel reaction. Dispersion of the inorganic component in the organic urethane acrylate matrix was improved by using a proper combination of sol-gel reaction and fast UV-curing resulting in the formation of the transparent coating layer. Various alkoxy silanes were employed to vary both the degree of curing and coating properties of UV-curable organic/inorganic hybrids. UV-cured organic/inorganic hybrid coatings showed an improved surface hardness and thermal resistance depending on the content of inorganic component.

SPAES/Silicate Hybrid Membranes for High-Temperature and Low-Humidity Proton Exchange Membrane Fuel Cells (고온-저습용 연료전지를 위한 SPAES/Silicate 복합막)

  • So, Soon Yong;Kim, Tae Ho;Kim, Sung Chul;Hong, Young Taik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.147-147
    • /
    • 2010
  • An electrolyte membranes for high temperature/low humidity is a demand for the proton exchange membrane fuel cells (PEMFCs). In this work, we prepared hybrid membranes, which have novel glass content in the hydrophilic and hydrophobic part of sulfonated poly(arylene ether sulfone) (SPAES) by in-situ sol-gel synthesis of various functional silane. The effect of silicate from functional silane content on the proton conductivity, water uptake of the hybrid membranes under high temperature and low humidity was quantitatively identified. The silicate content contributed to the enhancement of not only proton conductivity, but also water retention ability for PEMFCs operation.

  • PDF