• Title/Summary/Keyword: In-situ precipitation

Search Result 72, Processing Time 0.022 seconds

Establishment of a Wind Map of the Korean Peninsula I. Evaluation of Offshore Wind Resources Using Remote-Sensing Data (한반도 바람지도 구축에 관한 연구 I. 원격탐사자료를 이용한 해상풍력자원 평가)

  • Kim Hyun-Goo;Lee H.W;Jung W.S
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.63-72
    • /
    • 2005
  • In order to understand regional wind characteristics and to estimate offshore wind resources, a wind map of the Korean Peninsula was established using remote-sensing data from the satellite, U.S. NASA Quik SCAT which has been deployed for the Sea Winds Project since 1999. According to the linear regression result between the wind map data and in-situ marine-buoy data, the correlation factor was greatly improved up to 0.87 by blending the remote-sensing data of Quik SCAT with U.S. NCEP/NCAR CDAS reanalysis data to eliminate precipitation interference and to increase temporal resolution. It is found from the established wind map that the wind speed in winter is prominent temporally and the South Sea shows spatially high energy density over the wind class 6. The reason is deduced that the north-west winds through the Yellow Sea and the north-east winds through the East Sea derived by the low pressure developed in Japan are accelerated passing through the Korea Channel and formed high wind energy region in the South Sea; the same trends are confirmed from the statistical analysis of the meteorological observation data of KMA.

Review on the Remediation Method for Groundwater Contaminated with Cadmium (지하수 중 카드뮴 저감 방안에 대한 고찰)

  • Kwon, JongBeom;Park, Sunhwa;Kim, Deok Hyun;Yoon, JongHyun;Choi, Hyeonhee;Kim, Moonsu;Kim, Young;Shin, Sun-Kyoung;Kim, Hyun-Koo
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.4
    • /
    • pp.22-36
    • /
    • 2022
  • Cadmium is a class 1 carcinogen classified by the International Agency for Research on Cancer (IARC) and has a high potential for leaching into groundwater. Therefore, it is necessary to address cadmium contamination by employing adequate treatment methodologies. Although various methods have been suggested to reduce cadmium in groundwater, their applications often suffer from various limitation arising from heterogeneous field conditions and technical difficulties. In this work, several in-situ technologies to treat cadmium contaminated groundwater were reviewed and discussed by separately addressing physicochemical, chemical and biological methods. In particular, the optimum cadmium remediation strategies that involve physical removal of source area → physicochemical and chemical remediation → biological remediation were proposed by considering reduction efficiency, adsorption rate, economic feasibility and ease of field application in groundwater.

Preparation of Magnetite Nanoparticles by Two Step Reaction (2단계 반응에 의한 마그네타이트 나노입자의 제조)

  • Shin, Dae-Kyu;Riu, Doh-Hyung
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.148-155
    • /
    • 2008
  • Nano magnetite particles have been prepared by two step reaction consisting of urea hydrolysis and ammonia addition at certain ranges of pH. Three different concentrations of aqueous solution of ferric ($Fe^{3+}$) and ferrous ($Fe^{2+}$) chloride (0.3 M-0.6 M, and 0.9 M) were mixed with 4 M urea solution and heated to induce the urea hydrolysis. Upon reaching at a certain pre-determined pH (around 4.7), 1 M ammonia solution were poured into the heated reaction vessels. In order to understand the relationship between the concentration of the starting solution and the final size of magnetite, in-situ pH measurements and quenching experiments were simultaneous conducted. The changes in the concentration of starting solution resulted in the difference of the threshold time for pH uprise, from I hour to 3 hours, during which the akaganeite (${\beta}$-FeOOH) particles nucleated and grew. Through the quenching experiment, it was confirmed that controlling the size of ${\beta}$-FeOOH and the attaining a proper driving force for the reaction of ${\beta}$-FeOOH and $Fe^{2+}$ ion to give $Fe_3O_4$ are important process variables for the synthesis of uniform magnetite nanoparticles.

Applicability of Satellite SAR Imagery for Estimating Reservoir Storage (저수지 저수량 추정을 위한 위성 SAR 자료의 활용성)

  • Jang, Min-Won;Lee, Hyeon-Jeong;Kim, Yi-Hyun;Hong, Suk-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.7-16
    • /
    • 2011
  • This study discussed the applicability of satellite SAR (Synthetic Aperture Radar) imagery with regard to reservoir monitoring, and tried the extraction of reservoir storage from multi-temporal C-band RADARSAT-1 SAR backscattering images of Yedang and Goongpyeong agricultural reservoirs, acquired from May to October 2005. SAR technology has been advanced as a complementary and alternative approach to optical remote sensing and in-situ measurement. Water bodies in SAR imagery represent low brightness induced by low backscattering, and reservoir storage can be derived from the backscatter contrast with the level-area-volume relationship of each reservoir. The threshold segmentation over the routine preprocessing of SAR images such as speckle reduction and low-pass filtering concluded a significant correlation between the SAR-derived reservoir storage and the observation record in spite of the considerable disagreement. The result showed up critical limitations for adopting SAR data to reservoir monitoring as follows: the inappropriate specifications of SAR data, the unreliable rating curve of reservoir, the lack of climatic information such as wind and precipitation, the interruption of inside and neighboring land cover, and so on. Furthermore, better accuracy of SAR-based reservoir monitoring could be expected through different alternatives such as multi-sensor image fusion, water level measurement with altimeters or interferometry, etc.

Electron Microburst Generation by Wave Particle Interaction

  • Lee, Jae-Jin;Hwang, Jung-A;Parks, George K.;Min, Kyoung-Wook;Lee, En-Sang
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.43.2-43.2
    • /
    • 2009
  • Electron microbursts are the intense electron precipitation which durations are less than one second. We measured the energy spectra of the microbursts from 170 keV to 340 keV with solid state detectors aboard the low-altitude (680km), polar-orbiting Korean STSAT-1 (Science and Technology SATellite). The data showed that the loss cone at these energies is empty except when microbursts abruptly appear and fill the loss cone in less than 50 msec. This fast loss cone filling requires pitch angle diffusion coefficients larger than ~ 10-2rad2/sec, while ~10-5 rad2/sec was proposed by a wave particle interaction theory. We recalculated the diffusion coefficient, and reviewed of electron microburst generation mechanism with test particle simulations. This simulation successfully explained how chorus waves make pitch angle diffusion within such short period. From considering the resonance condition between wave and electrons, we also showed ~ 100 keV electrons could be easily aligned to the magnetic field, while ~ 1MeV electrons filled loss cone partially. This consideration explained why precipitating microbursts have lower e-folding energy than that of quasi-trapped electrons, and supports the theory that relativistic electron microbursts that have been observed by satellite in-situ measurement have same origin with ~100 keV electron microbursts that have been usually observed by balloon experiments.

  • PDF

Eu3+/Tb3+Co-Doped Cerium Oxide Transparent Nanocomposite for Color-Tunable Emission

  • Li, Xiaoyan;Yu, Yunlong;Guan, Xiangfeng;Luo, Peihui;Jiang, Linqin;Zheng, Zhiqiang;Chen, Dagui
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850119.1-1850119.6
    • /
    • 2018
  • $Eu^{3+}/Tb^{3+}$ co-doped nanocomposite containing $CeO_2$ nanocrystals was successfully prepared by an in situ sol-gel polymerization approach. High-resolution transmission electron microscopy demonstrated the homogeneous precipitation of $CeO_2$ nanocrystals among the polymethylmethacrylate (PMMA) matrix. The thermal stability and UV-shielding capability of the obtained nanocomposite were improved with increase of $CeO_2$ content. The tuning of the emissive color from green and yellow to red can be easily achieved by varying the dopant species and concentration. These results suggested that the obtained nanocomposite could be potentially applicable in transparent solid-state luminescent devices.

Pore structure evolution characteristics of sandstone uranium ore during acid leaching

  • Zeng, Sheng;Shen, Yuan;Sun, Bing;Zhang, Ni;Zhang, Shuwen;Feng, Song
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4033-4041
    • /
    • 2021
  • To better understand the permeability of uranium sandstone, improve the leaching rate of uranium, and explore the change law of pore structure characteristics and blocking mechanism during leaching, we systematically analyzed the microstructure of acid-leaching uranium sandstone. We investigated the variable rules of pore structure characteristics based on nuclear magnetic resonance (NMR). The results showed the following: (1) The uranium concentration change followed the exponential law during uranium deposits acid leaching. After 24 h, the uranium leaching rate reached 50%. The uranium leaching slowed gradually over the next 4 days. (2) Combined with the regularity of porosity variation, Stages I and II included chemical plugging controlled by surface reaction. Stage I was the major completion phase of uranium displacement with saturation precipitation of calcium sulfate. Stage II mainly precipitated iron (III) oxide-hydroxide and aluminum hydroxide. Stage III involved physical clogging controlled by diffusion. (3) In the three stages of leaching, the permeability of the leaching solution changed with the pore structure, which first decreased, then increased, and then decreased.

Analysis of Rainfall Infiltration Velocity in Unsaturated Soils Under Both Continuous and Repeated Rainfall Conditions by an Unsaturated Soil Column Test (불포화토 칼럼시험을 통한 연속강우와 반복강우의 강우침투속도 분석)

  • Park, Kyu-Bo;Chae, Byung-Gon;Park, Hyuck-Jin
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.133-145
    • /
    • 2011
  • Unsaturated soil column tests were performed for weathered gneiss soil and weathered granite soil to assess the relationship between infiltration velocity and rainfall condition for different rainfall durations and for multiple rainfall events separated by dry periods of various lengths (herein, 'rainfall break duration'). The volumetric water content was measured using TDR (Time Domain Reflectometry) sensors at regular time intervals. For the column tests, rainfall intensity was 20 mm/h and we varied the rainfall duration and rainfall break duration. The unit weight of weathered gneiss soil was designed 1.21 $g/cm^3$, which is lower than the in situ unit weight without overflow in the column. The in situ unit weight for weathered granite soil was designed 1.35 $g/cm^3$. The initial infiltration velocity of precipitation for the two weathered soils under total amount of rainfall as much as 200 mm conditions was $2.090{\times}10^{-3}$ to $2.854{\times}10^{-3}$ cm/s and $1.692{\times}10^{-3}$ to $2.012{\times}10^{-3}$ cm/s, respectively. These rates are higher than the repeated-infiltration velocities of precipitation under total amount of rainfall as much as 100 mm conditions ($1.309{\times}10^{-3}$ to $1.871{\times}10^{-3}$ cm/s and $1.175{\times}10^{-3}$ to $1.581{\times}10^{-3}$ cm/s, respectively), because the amount of precipitation under 200 mm conditions is more than that under 100 mm conditions. The repeated-infiltration velocities of weathered gneiss soil and weathered granite soil were $1.309{\times}10^{-3}$ to $2.854{\times}10^{-3}$ cm/s and $1.175{\times}10^{-3}$ to $2.012{\times}10^{-3}$ cm/s, respectively, being higher than the first-infiltration velocities ($1.307{\times}10^{-2}$ to $1.718{\times}10^{-2}$ cm/s and $1.789{\times}10^{-2}$ to $2.070{\times}10^{-2}$ cm/s, respectively). The results reflect the effect of reduced matric suction due to a reduction in the amount of air in the soil.

Differentiation Trend of Rare Earth Elements of the Skaergaard Intrusion (Skaergaard 암체의 희토류의 분화경향)

  • Yun D. Jang
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.617-625
    • /
    • 2001
  • The Skaergaard intrusion is widely considered a type example of a strongly fractionated, layered intrusion that has undergone extensive in situ igneous differentiation. The Intrusion, therefore, should be a good locality for modeling trace element vriation in a closed system. Previous studios (Haskin and Haskin, 1968; Faster et al., 1974), however, have suggested thats the rare earth elements in whole rocks and mineeral separates from the Intrusion did not fellow the expected trend for closed system crystatllization. Trace element modeling using published distribution coefficients, modal abundances of the coexisting minerals, and the concentration of trace elements In whole rocks and mineral separates from the Skaergaard Intrusion, reveals that the rare earth elements were significantly Influenced by the crystallization of abundant apatite in the Layered Series suring the final stages of crystallization. The results of trace element modeling also suggcsts that apatite, which appears sporadically in the UBS, is not a primary liquidus phase in these samples as previously suggested (Naslund, 1984) but an interstitial phase that (lid not directly effect trace element abundances In the evolving magma As the Skaergaard magma coaled convection, or convected as small Isolated cells during the final stages of differentiation, an elebated $P_{H2O}$ Induced by accumulation of volatile elements near the roof of the magma chamber ingibited or delayed the precipitation of primary apatite in the UBS If the Skaergaard differentiation Is modeler assuming primary apatite crystallization In the upper par of the LS where abundant modal apatite is present, and only late stage crystallization of apatite In the UBS where apatite Is less abundant, rare earth elements abundances follow a closed system variation trend. These results rule but any differentiation model for the Skaergaard Intrusion that Includesvolumetrically significant injections or discharges of magma Into or out of the chamber during the final 20% of the crystallization history.

  • PDF

An Experimental Study on Filtration Efficiency of Sand Filter Layers to TSS and COD in Non-point Source Pollutant (분산형 빗물 저류조용 모래 여과층을 적용한 도심지 비점오염원의 TSS와 COD 정화효율에 대한 실험적 연구)

  • Ahn, Jaeyoon;Lee, Dongseop;Han, Shinin;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1477-1488
    • /
    • 2014
  • Prevalent construction of impermeable pavements in urban areas causes diverse water-related environmental issues, such as lowering ground water levels and shortage of water supply for the living. In order to resolve such problems, a rainwater reservoir can be an effective and useful solution. The rainwater reservoir facilitates the hydrologic cycle in urban areas by temporarily retaining precipitation-runoff within a shallow subsurface layer for later use in a dry season. However, in order to use the stored water of precipitation-runoff, non-point source pollutants mostly retained in initial rainfall should be removed before being stored in the reservoir. Therefore, the purification system to filter out the non-point source pollutants is essential for the rainwater reservoir. The conventional soil filtration technology is well known to be able to capture non-point source pollutants in a economical and efficient way. This study adopted a sand filter layer (SFL) as a non-point source pollutant removal system in the rainwater reservoir, and conducted a series of lab-scale chamber tests and field tests to evaluate the pollutant removal efficiency and applicability of SFL. During the laboratory chamber experiments, three types of SFL with the different grain size characteristics were compared in the chamber with a dimension of $20cm{\times}30cm{\times}60cm$. To evaluate performance of the reservoir systems, the concentration of the polluted water in terms of TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) were measured and compared. In addition, a reduction in hydraulic conductivity of SFL due to pollutant clogging was indirectly estimated. The optimum SFL selected through the laboratory chamber experiments was verified on the in-situ rainwater reservoir for field applicability.